Spaces:
Runtime error
Runtime error
pengHTYX
commited on
Commit
•
a875c68
1
Parent(s):
db2690c
'test'
Browse files- .gitignore +2 -0
- mvdiffusion/data/dataset.py +138 -0
- mvdiffusion/data/dataset_nc.py +178 -0
- mvdiffusion/data/dreamdata.py +355 -0
- mvdiffusion/data/fixed_prompt_embeds_6view/clr_embeds.pt +3 -0
- mvdiffusion/data/fixed_prompt_embeds_6view/normal_embeds.pt +3 -0
- mvdiffusion/data/generate_fixed_text_embeds.py +78 -0
- mvdiffusion/data/normal_utils.py +78 -0
- mvdiffusion/data/single_image_dataset.py +249 -0
- mvdiffusion/models/transformer_mv2d_image.py +1029 -0
- mvdiffusion/models/transformer_mv2d_rowwise.py +978 -0
- mvdiffusion/models/transformer_mv2d_self_rowwise.py +1038 -0
- mvdiffusion/models/unet_mv2d_blocks.py +971 -0
- mvdiffusion/models/unet_mv2d_condition.py +1686 -0
- mvdiffusion/pipelines/pipeline_mvdiffusion_unclip.py +633 -0
- utils/misc.py +54 -0
- utils/utils.py +27 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
**/__pycache__/
|
2 |
+
examples/*
|
mvdiffusion/data/dataset.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import decord
|
2 |
+
# decord.bridge.set_bridge('torch')
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from einops import rearrange
|
6 |
+
from typing import Literal, Tuple, Optional, Any
|
7 |
+
import glob
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import random
|
11 |
+
import cv2
|
12 |
+
import math
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
|
18 |
+
class MVDiffusionDatasetV1(Dataset):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
root_dir: str,
|
22 |
+
num_views: int,
|
23 |
+
bg_color: Any,
|
24 |
+
img_wh: Tuple[int, int],
|
25 |
+
validation: bool = False,
|
26 |
+
num_validation_samples: int = 64,
|
27 |
+
num_samples: Optional[int] = None,
|
28 |
+
caption_path: Optional[str] = None,
|
29 |
+
elevation_range_deg: Tuple[float,float] = (-90, 90),
|
30 |
+
azimuth_range_deg: Tuple[float, float] = (0, 360),
|
31 |
+
):
|
32 |
+
self.all_obj_paths = sorted(glob.glob(os.path.join(root_dir, "*/*")))
|
33 |
+
if not validation:
|
34 |
+
self.all_obj_paths = self.all_obj_paths[:-num_validation_samples]
|
35 |
+
else:
|
36 |
+
self.all_obj_paths = self.all_obj_paths[-num_validation_samples:]
|
37 |
+
if num_samples is not None:
|
38 |
+
self.all_obj_paths = self.all_obj_paths[:num_samples]
|
39 |
+
self.all_obj_ids = [os.path.basename(path) for path in self.all_obj_paths]
|
40 |
+
self.num_views = num_views
|
41 |
+
self.bg_color = bg_color
|
42 |
+
self.img_wh = img_wh
|
43 |
+
|
44 |
+
def get_bg_color(self):
|
45 |
+
if self.bg_color == 'white':
|
46 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
47 |
+
elif self.bg_color == 'black':
|
48 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
49 |
+
elif self.bg_color == 'gray':
|
50 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
51 |
+
elif self.bg_color == 'random':
|
52 |
+
bg_color = np.random.rand(3)
|
53 |
+
elif isinstance(self.bg_color, float):
|
54 |
+
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
55 |
+
else:
|
56 |
+
raise NotImplementedError
|
57 |
+
return bg_color
|
58 |
+
|
59 |
+
def load_image(self, img_path, bg_color, return_type='np'):
|
60 |
+
# not using cv2 as may load in uint16 format
|
61 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
62 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
63 |
+
# pil always returns uint8
|
64 |
+
img = np.array(Image.open(img_path).resize(self.img_wh))
|
65 |
+
img = img.astype(np.float32) / 255. # [0, 1]
|
66 |
+
assert img.shape[-1] == 4 # RGBA
|
67 |
+
|
68 |
+
alpha = img[...,3:4]
|
69 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
70 |
+
|
71 |
+
if return_type == "np":
|
72 |
+
pass
|
73 |
+
elif return_type == "pt":
|
74 |
+
img = torch.from_numpy(img)
|
75 |
+
else:
|
76 |
+
raise NotImplementedError
|
77 |
+
|
78 |
+
return img
|
79 |
+
|
80 |
+
def __len__(self):
|
81 |
+
return len(self.all_obj_ids)
|
82 |
+
|
83 |
+
def __getitem__(self, index):
|
84 |
+
obj_path = self.all_obj_paths[index]
|
85 |
+
obj_id = self.all_obj_ids[index]
|
86 |
+
with open(os.path.join(obj_path, 'meta.json')) as f:
|
87 |
+
meta = json.loads(f.read())
|
88 |
+
|
89 |
+
num_views_all = len(meta['locations'])
|
90 |
+
num_groups = num_views_all // self.num_views
|
91 |
+
|
92 |
+
# random a set of 4 views
|
93 |
+
# the data is arranged in ascending order of the azimuth angle
|
94 |
+
group_ids = random.sample(range(num_groups), k=2)
|
95 |
+
cond_group_id, tgt_group_id = group_ids
|
96 |
+
cond_location = meta['locations'][cond_group_id * self.num_views + random.randint(0, self.num_views - 1)]
|
97 |
+
tgt_locations = meta['locations'][tgt_group_id * self.num_views : tgt_group_id * self.num_views + self.num_views]
|
98 |
+
# random an order
|
99 |
+
start_id = random.randint(0, self.num_views - 1)
|
100 |
+
tgt_locations = tgt_locations[start_id:] + tgt_locations[:start_id]
|
101 |
+
|
102 |
+
cond_elevation = cond_location['elevation']
|
103 |
+
cond_azimuth = cond_location['azimuth']
|
104 |
+
tgt_elevations = [loc['elevation'] for loc in tgt_locations]
|
105 |
+
tgt_azimuths = [loc['azimuth'] for loc in tgt_locations]
|
106 |
+
|
107 |
+
elevations = [ele - cond_elevation for ele in tgt_elevations]
|
108 |
+
azimuths = [(azi - cond_azimuth) % (math.pi * 2) for azi in tgt_azimuths]
|
109 |
+
elevations = torch.as_tensor(elevations).float()
|
110 |
+
azimuths = torch.as_tensor(azimuths).float()
|
111 |
+
elevations_cond = torch.as_tensor([cond_elevation] * self.num_views).float()
|
112 |
+
|
113 |
+
bg_color = self.get_bg_color()
|
114 |
+
img_tensors_in = [
|
115 |
+
self.load_image(os.path.join(obj_path, cond_location['frames'][0]['name']), bg_color, return_type='pt').permute(2, 0, 1)
|
116 |
+
] * self.num_views
|
117 |
+
img_tensors_out = []
|
118 |
+
for loc in tgt_locations:
|
119 |
+
img_path = os.path.join(obj_path, loc['frames'][0]['name'])
|
120 |
+
img_tensor = self.load_image(img_path, bg_color, return_type="pt").permute(2, 0, 1)
|
121 |
+
img_tensors_out.append(img_tensor)
|
122 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
123 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
124 |
+
|
125 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
126 |
+
|
127 |
+
return {
|
128 |
+
'elevations_cond': elevations_cond,
|
129 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
130 |
+
'elevations': elevations,
|
131 |
+
'azimuths': azimuths,
|
132 |
+
'elevations_deg': torch.rad2deg(elevations),
|
133 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
134 |
+
'imgs_in': img_tensors_in,
|
135 |
+
'imgs_out': img_tensors_out,
|
136 |
+
'camera_embeddings': camera_embeddings
|
137 |
+
}
|
138 |
+
|
mvdiffusion/data/dataset_nc.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import decord
|
2 |
+
# decord.bridge.set_bridge('torch')
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from einops import rearrange
|
6 |
+
from typing import Literal, Tuple, Optional, Any
|
7 |
+
import glob
|
8 |
+
import os
|
9 |
+
import json
|
10 |
+
import random
|
11 |
+
import cv2
|
12 |
+
import math
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
from PIL import Image
|
16 |
+
from .normal_utils import trans_normal, img2normal, normal2img
|
17 |
+
|
18 |
+
"""
|
19 |
+
load normal and color images together
|
20 |
+
"""
|
21 |
+
class MVDiffusionDatasetV2(Dataset):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
root_dir: str,
|
25 |
+
num_views: int,
|
26 |
+
bg_color: Any,
|
27 |
+
img_wh: Tuple[int, int],
|
28 |
+
validation: bool = False,
|
29 |
+
num_validation_samples: int = 64,
|
30 |
+
num_samples: Optional[int] = None,
|
31 |
+
caption_path: Optional[str] = None,
|
32 |
+
elevation_range_deg: Tuple[float,float] = (-90, 90),
|
33 |
+
azimuth_range_deg: Tuple[float, float] = (0, 360),
|
34 |
+
):
|
35 |
+
self.all_obj_paths = sorted(glob.glob(os.path.join(root_dir, "*/*")))
|
36 |
+
if not validation:
|
37 |
+
self.all_obj_paths = self.all_obj_paths[:-num_validation_samples]
|
38 |
+
else:
|
39 |
+
self.all_obj_paths = self.all_obj_paths[-num_validation_samples:]
|
40 |
+
if num_samples is not None:
|
41 |
+
self.all_obj_paths = self.all_obj_paths[:num_samples]
|
42 |
+
self.all_obj_ids = [os.path.basename(path) for path in self.all_obj_paths]
|
43 |
+
self.num_views = num_views
|
44 |
+
self.bg_color = bg_color
|
45 |
+
self.img_wh = img_wh
|
46 |
+
|
47 |
+
def get_bg_color(self):
|
48 |
+
if self.bg_color == 'white':
|
49 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
50 |
+
elif self.bg_color == 'black':
|
51 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
52 |
+
elif self.bg_color == 'gray':
|
53 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
54 |
+
elif self.bg_color == 'random':
|
55 |
+
bg_color = np.random.rand(3)
|
56 |
+
elif isinstance(self.bg_color, float):
|
57 |
+
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
58 |
+
else:
|
59 |
+
raise NotImplementedError
|
60 |
+
return bg_color
|
61 |
+
|
62 |
+
def load_image(self, img_path, bg_color, return_type='np'):
|
63 |
+
# not using cv2 as may load in uint16 format
|
64 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
65 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
66 |
+
# pil always returns uint8
|
67 |
+
img = np.array(Image.open(img_path).resize(self.img_wh))
|
68 |
+
img = img.astype(np.float32) / 255. # [0, 1]
|
69 |
+
assert img.shape[-1] == 4 # RGBA
|
70 |
+
|
71 |
+
alpha = img[...,3:4]
|
72 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
73 |
+
|
74 |
+
if return_type == "np":
|
75 |
+
pass
|
76 |
+
elif return_type == "pt":
|
77 |
+
img = torch.from_numpy(img)
|
78 |
+
else:
|
79 |
+
raise NotImplementedError
|
80 |
+
|
81 |
+
return img, alpha
|
82 |
+
|
83 |
+
def load_normal(self, img_path, bg_color, alpha, RT_w2c=None, RT_w2c_cond=None, return_type='np'):
|
84 |
+
# not using cv2 as may load in uint16 format
|
85 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
86 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
87 |
+
# pil always returns uint8
|
88 |
+
normal = np.array(Image.open(img_path).resize(self.img_wh))
|
89 |
+
|
90 |
+
assert normal.shape[-1] == 3 # RGB
|
91 |
+
|
92 |
+
normal = trans_normal(img2normal(normal), RT_w2c, RT_w2c_cond)
|
93 |
+
img = normal2img(normal)
|
94 |
+
|
95 |
+
img = img.astype(np.float32) / 255. # [0, 1]
|
96 |
+
|
97 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
98 |
+
|
99 |
+
if return_type == "np":
|
100 |
+
pass
|
101 |
+
elif return_type == "pt":
|
102 |
+
img = torch.from_numpy(img)
|
103 |
+
else:
|
104 |
+
raise NotImplementedError
|
105 |
+
|
106 |
+
return img
|
107 |
+
|
108 |
+
def __len__(self):
|
109 |
+
return len(self.all_obj_ids)
|
110 |
+
|
111 |
+
def __getitem__(self, index):
|
112 |
+
obj_path = self.all_obj_paths[index]
|
113 |
+
obj_id = self.all_obj_ids[index]
|
114 |
+
with open(os.path.join(obj_path, 'meta.json')) as f:
|
115 |
+
meta = json.loads(f.read())
|
116 |
+
|
117 |
+
num_views_all = len(meta['locations'])
|
118 |
+
num_groups = num_views_all // self.num_views
|
119 |
+
|
120 |
+
# random a set of 4 views
|
121 |
+
# the data is arranged in ascending order of the azimuth angle
|
122 |
+
group_ids = random.sample(range(num_groups), k=2)
|
123 |
+
cond_group_id, tgt_group_id = group_ids
|
124 |
+
cond_location = meta['locations'][cond_group_id * self.num_views + random.randint(0, self.num_views - 1)]
|
125 |
+
tgt_locations = meta['locations'][tgt_group_id * self.num_views : tgt_group_id * self.num_views + self.num_views]
|
126 |
+
# random an order
|
127 |
+
start_id = random.randint(0, self.num_views - 1)
|
128 |
+
tgt_locations = tgt_locations[start_id:] + tgt_locations[:start_id]
|
129 |
+
|
130 |
+
cond_elevation = cond_location['elevation']
|
131 |
+
cond_azimuth = cond_location['azimuth']
|
132 |
+
cond_c2w = cond_location['transform_matrix']
|
133 |
+
cond_w2c = np.linalg.inv(cond_c2w)
|
134 |
+
tgt_elevations = [loc['elevation'] for loc in tgt_locations]
|
135 |
+
tgt_azimuths = [loc['azimuth'] for loc in tgt_locations]
|
136 |
+
tgt_c2ws = [loc['transform_matrix'] for loc in tgt_locations]
|
137 |
+
tgt_w2cs = [np.linalg.inv(loc['transform_matrix']) for loc in tgt_locations]
|
138 |
+
|
139 |
+
elevations = [ele - cond_elevation for ele in tgt_elevations]
|
140 |
+
azimuths = [(azi - cond_azimuth) % (math.pi * 2) for azi in tgt_azimuths]
|
141 |
+
elevations = torch.as_tensor(elevations).float()
|
142 |
+
azimuths = torch.as_tensor(azimuths).float()
|
143 |
+
elevations_cond = torch.as_tensor([cond_elevation] * self.num_views).float()
|
144 |
+
|
145 |
+
bg_color = self.get_bg_color()
|
146 |
+
img_tensors_in = [
|
147 |
+
self.load_image(os.path.join(obj_path, cond_location['frames'][0]['name']), bg_color, return_type='pt')[0].permute(2, 0, 1)
|
148 |
+
] * self.num_views
|
149 |
+
img_tensors_out = []
|
150 |
+
normal_tensors_out = []
|
151 |
+
for loc, tgt_w2c in zip(tgt_locations, tgt_w2cs):
|
152 |
+
img_path = os.path.join(obj_path, loc['frames'][0]['name'])
|
153 |
+
img_tensor, alpha = self.load_image(img_path, bg_color, return_type="pt")
|
154 |
+
img_tensor = img_tensor.permute(2, 0, 1)
|
155 |
+
img_tensors_out.append(img_tensor)
|
156 |
+
|
157 |
+
normal_path = os.path.join(obj_path, loc['frames'][1]['name'])
|
158 |
+
normal_tensor = self.load_normal(normal_path, bg_color, alpha, RT_w2c=tgt_w2c, RT_w2c_cond=cond_w2c, return_type="pt").permute(2, 0, 1)
|
159 |
+
normal_tensors_out.append(normal_tensor)
|
160 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
161 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
162 |
+
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
163 |
+
|
164 |
+
camera_embeddings = torch.stack([elevations_cond, elevations, azimuths], dim=-1) # (Nv, 3)
|
165 |
+
|
166 |
+
return {
|
167 |
+
'elevations_cond': elevations_cond,
|
168 |
+
'elevations_cond_deg': torch.rad2deg(elevations_cond),
|
169 |
+
'elevations': elevations,
|
170 |
+
'azimuths': azimuths,
|
171 |
+
'elevations_deg': torch.rad2deg(elevations),
|
172 |
+
'azimuths_deg': torch.rad2deg(azimuths),
|
173 |
+
'imgs_in': img_tensors_in,
|
174 |
+
'imgs_out': img_tensors_out,
|
175 |
+
'normals_out': normal_tensors_out,
|
176 |
+
'camera_embeddings': camera_embeddings
|
177 |
+
}
|
178 |
+
|
mvdiffusion/data/dreamdata.py
ADDED
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from pathlib import Path
|
7 |
+
import json
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
from typing import Literal, Tuple, Optional, Any
|
12 |
+
import cv2
|
13 |
+
import random
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os, sys
|
17 |
+
import math
|
18 |
+
|
19 |
+
from PIL import Image, ImageOps
|
20 |
+
from normal_utils import worldNormal2camNormal, plot_grid_images, img2normal, norm_normalize, deg2rad
|
21 |
+
|
22 |
+
import pdb
|
23 |
+
from icecream import ic
|
24 |
+
def shift_list(lst, n):
|
25 |
+
length = len(lst)
|
26 |
+
n = n % length # Ensure n is within the range of the list length
|
27 |
+
return lst[-n:] + lst[:-n]
|
28 |
+
|
29 |
+
|
30 |
+
class ObjaverseDataset(Dataset):
|
31 |
+
def __init__(self,
|
32 |
+
root_dir: str,
|
33 |
+
azi_interval: float,
|
34 |
+
random_views: int,
|
35 |
+
predict_relative_views: list,
|
36 |
+
bg_color: Any,
|
37 |
+
object_list: str,
|
38 |
+
prompt_embeds_path: str,
|
39 |
+
img_wh: Tuple[int, int],
|
40 |
+
validation: bool = False,
|
41 |
+
num_validation_samples: int = 64,
|
42 |
+
num_samples: Optional[int] = None,
|
43 |
+
invalid_list: Optional[str] = None,
|
44 |
+
trans_norm_system: bool = True, # if True, transform all normals map into the cam system of front view
|
45 |
+
# augment_data: bool = False,
|
46 |
+
side_views_rate: float = 0.,
|
47 |
+
read_normal: bool = True,
|
48 |
+
read_color: bool = False,
|
49 |
+
read_depth: bool = False,
|
50 |
+
mix_color_normal: bool = False,
|
51 |
+
random_view_and_domain: bool = False,
|
52 |
+
load_cache: bool = False,
|
53 |
+
exten: str = '.png',
|
54 |
+
elevation_list: Optional[str] = None,
|
55 |
+
) -> None:
|
56 |
+
"""Create a dataset from a folder of images.
|
57 |
+
If you pass in a root directory it will be searched for images
|
58 |
+
ending in ext (ext can be a list)
|
59 |
+
"""
|
60 |
+
self.root_dir = root_dir
|
61 |
+
self.fixed_views = int(360 // azi_interval)
|
62 |
+
self.bg_color = bg_color
|
63 |
+
self.validation = validation
|
64 |
+
self.num_samples = num_samples
|
65 |
+
self.trans_norm_system = trans_norm_system
|
66 |
+
# self.augment_data = augment_data
|
67 |
+
self.invalid_list = invalid_list
|
68 |
+
self.img_wh = img_wh
|
69 |
+
self.read_normal = read_normal
|
70 |
+
self.read_color = read_color
|
71 |
+
self.read_depth = read_depth
|
72 |
+
self.mix_color_normal = mix_color_normal # mix load color and normal maps
|
73 |
+
self.random_view_and_domain = random_view_and_domain # load normal or rgb of a single view
|
74 |
+
self.random_views = random_views
|
75 |
+
self.load_cache = load_cache
|
76 |
+
self.total_views = int(self.fixed_views * (self.random_views + 1))
|
77 |
+
self.predict_relative_views = predict_relative_views
|
78 |
+
self.pred_view_nums = len(self.predict_relative_views)
|
79 |
+
self.exten = exten
|
80 |
+
self.side_views_rate = side_views_rate
|
81 |
+
|
82 |
+
# ic(self.augment_data)
|
83 |
+
ic(self.total_views)
|
84 |
+
ic(self.fixed_views)
|
85 |
+
ic(self.predict_relative_views)
|
86 |
+
|
87 |
+
self.objects = []
|
88 |
+
if object_list is not None:
|
89 |
+
for dataset_list in object_list:
|
90 |
+
with open(dataset_list, 'r') as f:
|
91 |
+
# objects = f.readlines()
|
92 |
+
# objects = [o.strip() for o in objects]
|
93 |
+
objects = json.load(f)
|
94 |
+
self.objects.extend(objects)
|
95 |
+
else:
|
96 |
+
self.objects = os.listdir(self.root_dir)
|
97 |
+
|
98 |
+
# load fixed camera poses
|
99 |
+
self.trans_cv2gl_mat = np.linalg.inv(np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1]]))
|
100 |
+
self.fix_cam_poses = []
|
101 |
+
camera_path = os.path.join(self.root_dir, self.objects[0], 'camera')
|
102 |
+
for vid in range(0, self.total_views, self.random_views+1):
|
103 |
+
cam_info = np.load(f'{camera_path}/{vid:03d}.npy', allow_pickle=True).item()
|
104 |
+
assert cam_info['camera'] == 'ortho', 'Only support predict ortho camera !!!'
|
105 |
+
self.fix_cam_poses.append(cam_info['extrinsic'])
|
106 |
+
random.shuffle(self.objects)
|
107 |
+
|
108 |
+
# import pdb; pdb.set_trace()
|
109 |
+
invalid_objects = []
|
110 |
+
if self.invalid_list is not None:
|
111 |
+
for invalid_list in self.invalid_list:
|
112 |
+
if invalid_list[-4:] == '.txt':
|
113 |
+
with open(invalid_list, 'r') as f:
|
114 |
+
sub_invalid = f.readlines()
|
115 |
+
invalid_objects.extend([o.strip() for o in sub_invalid])
|
116 |
+
else:
|
117 |
+
with open(invalid_list) as f:
|
118 |
+
invalid_objects.extend(json.load(f))
|
119 |
+
self.invalid_objects = invalid_objects
|
120 |
+
ic(len(self.invalid_objects))
|
121 |
+
|
122 |
+
if elevation_list:
|
123 |
+
with open(elevation_list, 'r') as f:
|
124 |
+
ele_list = [o.strip() for o in f.readlines()]
|
125 |
+
self.objects = set(ele_list) & set(self.objects)
|
126 |
+
|
127 |
+
self.all_objects = set(self.objects) - (set(self.invalid_objects) & set(self.objects))
|
128 |
+
self.all_objects = list(self.all_objects)
|
129 |
+
|
130 |
+
self.validation = validation
|
131 |
+
if not validation:
|
132 |
+
self.all_objects = self.all_objects[:-num_validation_samples]
|
133 |
+
# print('Warning: you are fitting in small-scale dataset')
|
134 |
+
# self.all_objects = self.all_objects
|
135 |
+
else:
|
136 |
+
self.all_objects = self.all_objects[-num_validation_samples:]
|
137 |
+
|
138 |
+
if num_samples is not None:
|
139 |
+
self.all_objects = self.all_objects[:num_samples]
|
140 |
+
ic(len(self.all_objects))
|
141 |
+
print("loading ", len(self.all_objects), " objects in the dataset")
|
142 |
+
|
143 |
+
self.normal_prompt_embedding = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
|
144 |
+
self.color_prompt_embedding = torch.load(f'{prompt_embeds_path}/clr_embeds.pt')
|
145 |
+
|
146 |
+
if self.mix_color_normal:
|
147 |
+
self.backup_data = self.__getitem_mix__(0, '8609cf7e67bf413487a7d94c73aeaa3e')
|
148 |
+
else:
|
149 |
+
self.backup_data = self.__getitem_norm__(0, '8609cf7e67bf413487a7d94c73aeaa3e')
|
150 |
+
|
151 |
+
def trans_cv2gl(self, rt):
|
152 |
+
r, t = rt[:3, :3], rt[:3, -1]
|
153 |
+
r = np.matmul(self.trans_cv2gl_mat, r)
|
154 |
+
t = np.matmul(self.trans_cv2gl_mat, t)
|
155 |
+
return np.concatenate([r, t[:, None]], axis=-1)
|
156 |
+
|
157 |
+
def get_bg_color(self):
|
158 |
+
if self.bg_color == 'white':
|
159 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
160 |
+
elif self.bg_color == 'black':
|
161 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
162 |
+
elif self.bg_color == 'gray':
|
163 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
164 |
+
elif self.bg_color == 'random':
|
165 |
+
bg_color = np.random.rand(3)
|
166 |
+
elif self.bg_color == 'three_choices':
|
167 |
+
white = np.array([1., 1., 1.], dtype=np.float32)
|
168 |
+
black = np.array([0., 0., 0.], dtype=np.float32)
|
169 |
+
gray = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
170 |
+
bg_color = random.choice([white, black, gray])
|
171 |
+
elif isinstance(self.bg_color, float):
|
172 |
+
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
173 |
+
else:
|
174 |
+
raise NotImplementedError
|
175 |
+
return bg_color
|
176 |
+
|
177 |
+
|
178 |
+
def load_image(self, img_path, bg_color, alpha=None, return_type='np'):
|
179 |
+
# not using cv2 as may load in uint16 format
|
180 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
181 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
182 |
+
# pil always returns uint8
|
183 |
+
rgba = np.array(Image.open(img_path).resize(self.img_wh))
|
184 |
+
rgba = rgba.astype(np.float32) / 255. # [0, 1]
|
185 |
+
|
186 |
+
img = rgba[..., :3]
|
187 |
+
if alpha is None:
|
188 |
+
assert rgba.shape[-1] == 4
|
189 |
+
alpha = rgba[..., 3:4]
|
190 |
+
assert alpha.sum() > 1e-8, 'w/o foreground'
|
191 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
192 |
+
|
193 |
+
if return_type == "np":
|
194 |
+
pass
|
195 |
+
elif return_type == "pt":
|
196 |
+
img = torch.from_numpy(img)
|
197 |
+
alpha = torch.from_numpy(alpha)
|
198 |
+
else:
|
199 |
+
raise NotImplementedError
|
200 |
+
|
201 |
+
return img, alpha
|
202 |
+
|
203 |
+
def load_depth(self, img_path, bg_color, alpha, input_type='png', return_type='np'):
|
204 |
+
# not using cv2 as may load in uint16 format
|
205 |
+
# img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # [0, 255]
|
206 |
+
# img = cv2.resize(img, self.img_wh, interpolation=cv2.INTER_CUBIC)
|
207 |
+
# pil always returns uint8
|
208 |
+
img = np.array(Image.open(img_path).resize(self.img_wh))
|
209 |
+
img = img.astype(np.float32) / 65535. # [0, 1]
|
210 |
+
|
211 |
+
img[img > 0.4] = 0
|
212 |
+
img = img / 0.4
|
213 |
+
|
214 |
+
assert img.ndim == 2 # depth
|
215 |
+
img = np.stack([img]*3, axis=-1)
|
216 |
+
|
217 |
+
if alpha.shape[-1] != 1:
|
218 |
+
alpha = alpha[:, :, None]
|
219 |
+
|
220 |
+
# print(np.max(img[:, :, 0]))
|
221 |
+
|
222 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
223 |
+
|
224 |
+
if return_type == "np":
|
225 |
+
pass
|
226 |
+
elif return_type == "pt":
|
227 |
+
img = torch.from_numpy(img)
|
228 |
+
else:
|
229 |
+
raise NotImplementedError
|
230 |
+
|
231 |
+
return img
|
232 |
+
|
233 |
+
def load_normal(self, img_path, bg_color, alpha, RT_w2c_cond=None, return_type='np'):
|
234 |
+
normal_np = np.array(Image.open(img_path).resize(self.img_wh))[:, :, :3]
|
235 |
+
assert np.var(normal_np) > 1e-8, 'pure normal'
|
236 |
+
normal_cv = img2normal(normal_np)
|
237 |
+
|
238 |
+
normal_relative_cv = worldNormal2camNormal(RT_w2c_cond[:3, :3], normal_cv)
|
239 |
+
normal_relative_cv = norm_normalize(normal_relative_cv)
|
240 |
+
# normal_relative_gl = normal_relative_cv[..., [ 0, 2, 1]]
|
241 |
+
# normal_relative_gl[..., 2] = -normal_relative_gl[..., 2]
|
242 |
+
normal_relative_gl = normal_relative_cv
|
243 |
+
normal_relative_gl[..., 1:] = -normal_relative_gl[..., 1:]
|
244 |
+
|
245 |
+
img = (normal_relative_cv*0.5 + 0.5).astype(np.float32) # [0, 1]
|
246 |
+
|
247 |
+
if alpha.shape[-1] != 1:
|
248 |
+
alpha = alpha[:, :, None]
|
249 |
+
|
250 |
+
|
251 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
252 |
+
|
253 |
+
if return_type == "np":
|
254 |
+
pass
|
255 |
+
elif return_type == "pt":
|
256 |
+
img = torch.from_numpy(img)
|
257 |
+
else:
|
258 |
+
raise NotImplementedError
|
259 |
+
|
260 |
+
return img
|
261 |
+
|
262 |
+
def __len__(self):
|
263 |
+
return len(self.all_objects)
|
264 |
+
|
265 |
+
def __getitem_norm__(self, index, debug_object=None):
|
266 |
+
# get the bg color
|
267 |
+
bg_color = self.get_bg_color()
|
268 |
+
if debug_object is not None:
|
269 |
+
object_name = debug_object
|
270 |
+
else:
|
271 |
+
object_name = self.all_objects[index % len(self.all_objects)]
|
272 |
+
|
273 |
+
if self.validation:
|
274 |
+
cond_ele0_idx = 12
|
275 |
+
else:
|
276 |
+
rand = random.random()
|
277 |
+
if rand < self.side_views_rate: # 0.1
|
278 |
+
cond_ele0_idx = random.sample([8, 0], 1)[0]
|
279 |
+
elif rand < 3 * self.side_views_rate: # 0.3
|
280 |
+
cond_ele0_idx = random.sample([10, 14], 1)[0]
|
281 |
+
else:
|
282 |
+
cond_ele0_idx = 12 # front view
|
283 |
+
cond_random_idx = random.sample(range(self.random_views+1), 1)[0]
|
284 |
+
|
285 |
+
# condition info
|
286 |
+
cond_ele0_vid = cond_ele0_idx * (self.random_views + 1)
|
287 |
+
cond_vid = cond_ele0_vid + cond_random_idx
|
288 |
+
cond_ele0_w2c = self.fix_cam_poses[cond_ele0_idx]
|
289 |
+
cond_info = np.load(f'{self.root_dir}/{object_name}/camera/{cond_vid:03d}.npy', allow_pickle=True).item()
|
290 |
+
cond_type = cond_info['camera']
|
291 |
+
focal_len = cond_info['focal']
|
292 |
+
|
293 |
+
cond_eles = np.array([deg2rad(cond_info['elevation'])])
|
294 |
+
|
295 |
+
img_tensors_in = [
|
296 |
+
self.load_image(f"{self.root_dir}/{object_name}/image/{cond_vid:03d}{self.exten}", bg_color, return_type='pt')[0].permute(2, 0, 1)
|
297 |
+
] * self.pred_view_nums
|
298 |
+
|
299 |
+
# output info
|
300 |
+
pred_vids = [(cond_ele0_vid + i * (self.random_views+1)) % self.total_views for i in self.predict_relative_views]
|
301 |
+
# pred_w2cs = [self.fix_cam_poses[(cond_ele0_idx + i) % self.fixed_views] for i in self.predict_relative_views]
|
302 |
+
img_tensors_out = []
|
303 |
+
normal_tensors_out = []
|
304 |
+
for i, vid in enumerate(pred_vids):
|
305 |
+
try:
|
306 |
+
img_tensor, alpha_ = self.load_image(f"{self.root_dir}/{object_name}/image/{vid:03d}{self.exten}", bg_color, return_type='pt')
|
307 |
+
except:
|
308 |
+
img_tensor, alpha_ = self.load_image(f"{self.root_dir}/{object_name}/image_relit/{vid:03d}{self.exten}", bg_color, return_type='pt')
|
309 |
+
|
310 |
+
img_tensor = img_tensor.permute(2, 0, 1) # (3, H, W)
|
311 |
+
img_tensors_out.append(img_tensor)
|
312 |
+
|
313 |
+
|
314 |
+
normal_tensor = self.load_normal(f"{self.root_dir}/{object_name}/normal/{vid:03d}{self.exten}", bg_color, alpha_.numpy(), RT_w2c_cond=cond_ele0_w2c[:3, :], return_type="pt").permute(2, 0, 1)
|
315 |
+
normal_tensors_out.append(normal_tensor)
|
316 |
+
|
317 |
+
|
318 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
319 |
+
img_tensors_out = torch.stack(img_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
320 |
+
normal_tensors_out = torch.stack(normal_tensors_out, dim=0).float() # (Nv, 3, H, W)
|
321 |
+
|
322 |
+
elevations_cond = torch.as_tensor(cond_eles).float()
|
323 |
+
if cond_type == 'ortho':
|
324 |
+
focal_embed = torch.tensor([0.])
|
325 |
+
else:
|
326 |
+
focal_embed = torch.tensor([24./focal_len])
|
327 |
+
|
328 |
+
|
329 |
+
if not self.load_cache:
|
330 |
+
return {
|
331 |
+
'elevations_cond': elevations_cond,
|
332 |
+
'focal_cond': focal_embed,
|
333 |
+
'id': object_name,
|
334 |
+
'vid':cond_vid,
|
335 |
+
'imgs_in': img_tensors_in,
|
336 |
+
'imgs_out': img_tensors_out,
|
337 |
+
'normals_out': normal_tensors_out,
|
338 |
+
'normal_prompt_embeddings': self.normal_prompt_embedding,
|
339 |
+
'color_prompt_embeddings': self.color_prompt_embedding
|
340 |
+
}
|
341 |
+
|
342 |
+
|
343 |
+
|
344 |
+
def __getitem__(self, index):
|
345 |
+
try:
|
346 |
+
return self.__getitem_norm__(index)
|
347 |
+
except:
|
348 |
+
print("load error ", self.all_objects[index%len(self.all_objects)] )
|
349 |
+
return self.backup_data
|
350 |
+
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
|
355 |
+
|
mvdiffusion/data/fixed_prompt_embeds_6view/clr_embeds.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9e51666588d0f075e031262744d371e12076160231aab19a531dbf7ab976e4d
|
3 |
+
size 946932
|
mvdiffusion/data/fixed_prompt_embeds_6view/normal_embeds.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53dfcd17f62fbfd8aeba60b1b05fa7559d72179738fd048e2ac1d53e5be5ed9d
|
3 |
+
size 946941
|
mvdiffusion/data/generate_fixed_text_embeds.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPTokenizer, CLIPTextModel
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
root = '/mnt/data/lipeng/'
|
6 |
+
pretrained_model_name_or_path = 'stabilityai/stable-diffusion-2-1-unclip'
|
7 |
+
|
8 |
+
|
9 |
+
weight_dtype = torch.float16
|
10 |
+
device = torch.device("cuda:0")
|
11 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
|
12 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder='text_encoder')
|
13 |
+
text_encoder = text_encoder.to(device, dtype=weight_dtype)
|
14 |
+
|
15 |
+
def generate_mv_embeds():
|
16 |
+
path = './fixed_prompt_embeds_8view'
|
17 |
+
os.makedirs(path, exist_ok=True)
|
18 |
+
views = ["front", "front_right", "right", "back_right", "back", " back_left", "left", "front_left"]
|
19 |
+
# views = ["front", "front_right", "right", "back", "left", "front_left"]
|
20 |
+
# views = ["front", "right", "back", "left"]
|
21 |
+
clr_prompt = [f"a rendering image of 3D models, {view} view, color map." for view in views]
|
22 |
+
normal_prompt = [f"a rendering image of 3D models, {view} view, normal map." for view in views]
|
23 |
+
|
24 |
+
|
25 |
+
for id, text_prompt in enumerate([clr_prompt, normal_prompt]):
|
26 |
+
print(text_prompt)
|
27 |
+
text_inputs = tokenizer(text_prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device)
|
28 |
+
text_input_ids = text_inputs.input_ids
|
29 |
+
untruncated_ids = tokenizer(text_prompt, padding="longest", return_tensors="pt").input_ids
|
30 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
31 |
+
text_input_ids, untruncated_ids):
|
32 |
+
removed_text = tokenizer.batch_decode(
|
33 |
+
untruncated_ids[:, tokenizer.model_max_length - 1 : -1]
|
34 |
+
)
|
35 |
+
if hasattr(text_encoder.config, "use_attention_mask") and text_encoder.config.use_attention_mask:
|
36 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
37 |
+
else:
|
38 |
+
attention_mask = None
|
39 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=attention_mask,)
|
40 |
+
prompt_embeds = prompt_embeds[0].detach().cpu()
|
41 |
+
print(prompt_embeds.shape)
|
42 |
+
|
43 |
+
|
44 |
+
# print(prompt_embeds.dtype)
|
45 |
+
if id == 0:
|
46 |
+
torch.save(prompt_embeds, f'./{path}/clr_embeds.pt')
|
47 |
+
else:
|
48 |
+
torch.save(prompt_embeds, f'./{path}/normal_embeds.pt')
|
49 |
+
print('done')
|
50 |
+
|
51 |
+
|
52 |
+
def generate_img_embeds():
|
53 |
+
path = './fixed_prompt_embeds_persp2ortho'
|
54 |
+
os.makedirs(path, exist_ok=True)
|
55 |
+
text_prompt = ["a orthogonal renderining image of 3D models"]
|
56 |
+
print(text_prompt)
|
57 |
+
text_inputs = tokenizer(text_prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt").to(device)
|
58 |
+
text_input_ids = text_inputs.input_ids
|
59 |
+
untruncated_ids = tokenizer(text_prompt, padding="longest", return_tensors="pt").input_ids
|
60 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
61 |
+
text_input_ids, untruncated_ids):
|
62 |
+
removed_text = tokenizer.batch_decode(
|
63 |
+
untruncated_ids[:, tokenizer.model_max_length - 1 : -1]
|
64 |
+
)
|
65 |
+
if hasattr(text_encoder.config, "use_attention_mask") and text_encoder.config.use_attention_mask:
|
66 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
67 |
+
else:
|
68 |
+
attention_mask = None
|
69 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), attention_mask=attention_mask,)
|
70 |
+
prompt_embeds = prompt_embeds[0].detach().cpu()
|
71 |
+
print(prompt_embeds.shape)
|
72 |
+
|
73 |
+
# print(prompt_embeds.dtype)
|
74 |
+
|
75 |
+
torch.save(prompt_embeds, f'./{path}/embeds.pt')
|
76 |
+
print('done')
|
77 |
+
|
78 |
+
generate_img_embeds()
|
mvdiffusion/data/normal_utils.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
def deg2rad(deg):
|
3 |
+
return deg*np.pi/180
|
4 |
+
|
5 |
+
def inv_RT(RT):
|
6 |
+
# RT_h = np.concatenate([RT, np.array([[0,0,0,1]])], axis=0)
|
7 |
+
RT_inv = np.linalg.inv(RT)
|
8 |
+
|
9 |
+
return RT_inv[:3, :]
|
10 |
+
def camNormal2worldNormal(rot_c2w, camNormal):
|
11 |
+
H,W,_ = camNormal.shape
|
12 |
+
normal_img = np.matmul(rot_c2w[None, :, :], camNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
|
13 |
+
|
14 |
+
return normal_img
|
15 |
+
|
16 |
+
def worldNormal2camNormal(rot_w2c, normal_map_world):
|
17 |
+
H,W,_ = normal_map_world.shape
|
18 |
+
# normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
|
19 |
+
|
20 |
+
# faster version
|
21 |
+
# Reshape the normal map into a 2D array where each row represents a normal vector
|
22 |
+
normal_map_flat = normal_map_world.reshape(-1, 3)
|
23 |
+
|
24 |
+
# Transform the normal vectors using the transformation matrix
|
25 |
+
normal_map_camera_flat = np.dot(normal_map_flat, rot_w2c.T)
|
26 |
+
|
27 |
+
# Reshape the transformed normal map back to its original shape
|
28 |
+
normal_map_camera = normal_map_camera_flat.reshape(normal_map_world.shape)
|
29 |
+
|
30 |
+
return normal_map_camera
|
31 |
+
|
32 |
+
def trans_normal(normal, RT_w2c, RT_w2c_target):
|
33 |
+
|
34 |
+
# normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
|
35 |
+
# normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)
|
36 |
+
|
37 |
+
relative_RT = np.matmul(RT_w2c_target[:3,:3], np.linalg.inv(RT_w2c[:3,:3]))
|
38 |
+
return worldNormal2camNormal(relative_RT[:3,:3], normal)
|
39 |
+
|
40 |
+
def trans_normal_complex(normal, RT_w2c, RT_w2c_rela_to_cond):
|
41 |
+
# camview -> world -> condview
|
42 |
+
normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
|
43 |
+
# debug_normal_world = normal2img(normal_world)
|
44 |
+
|
45 |
+
# relative_RT = np.matmul(RT_w2c_rela_to_cond[:3,:3], np.linalg.inv(RT_w2c[:3,:3]))
|
46 |
+
normal_target_cam = worldNormal2camNormal(RT_w2c_rela_to_cond[:3,:3], normal_world)
|
47 |
+
# normal_condview = normal2img(normal_target_cam)
|
48 |
+
return normal_target_cam
|
49 |
+
def img2normal(img):
|
50 |
+
return (img/255.)*2-1
|
51 |
+
|
52 |
+
def normal2img(normal):
|
53 |
+
return np.uint8((normal*0.5+0.5)*255)
|
54 |
+
|
55 |
+
def norm_normalize(normal, dim=-1):
|
56 |
+
|
57 |
+
normal = normal/(np.linalg.norm(normal, axis=dim, keepdims=True)+1e-6)
|
58 |
+
|
59 |
+
return normal
|
60 |
+
|
61 |
+
def plot_grid_images(images, row, col, path=None):
|
62 |
+
import cv2
|
63 |
+
"""
|
64 |
+
Args:
|
65 |
+
images: np.array [B, H, W, 3]
|
66 |
+
row:
|
67 |
+
col:
|
68 |
+
save_path:
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
|
72 |
+
"""
|
73 |
+
images = images.detach().cpu().numpy()
|
74 |
+
assert row * col == images.shape[0]
|
75 |
+
images = np.vstack([np.hstack(images[r * col:(r + 1) * col]) for r in range(row)])
|
76 |
+
if path:
|
77 |
+
cv2.imwrite(path, images[:,:,::-1] * 255)
|
78 |
+
return images
|
mvdiffusion/data/single_image_dataset.py
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
import numpy as np
|
3 |
+
from omegaconf import DictConfig, ListConfig
|
4 |
+
import torch
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
from pathlib import Path
|
7 |
+
import json
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from einops import rearrange
|
11 |
+
from typing import Literal, Tuple, Optional, Any
|
12 |
+
import cv2
|
13 |
+
import random
|
14 |
+
|
15 |
+
import json
|
16 |
+
import os, sys
|
17 |
+
import math
|
18 |
+
|
19 |
+
from glob import glob
|
20 |
+
|
21 |
+
import PIL.Image
|
22 |
+
from .normal_utils import trans_normal, normal2img, img2normal
|
23 |
+
import pdb
|
24 |
+
from icecream import ic
|
25 |
+
|
26 |
+
import cv2
|
27 |
+
import numpy as np
|
28 |
+
|
29 |
+
def add_margin(pil_img, color=0, size=256):
|
30 |
+
width, height = pil_img.size
|
31 |
+
result = Image.new(pil_img.mode, (size, size), color)
|
32 |
+
result.paste(pil_img, ((size - width) // 2, (size - height) // 2))
|
33 |
+
return result
|
34 |
+
|
35 |
+
def scale_and_place_object(image, scale_factor):
|
36 |
+
assert np.shape(image)[-1]==4 # RGBA
|
37 |
+
|
38 |
+
# Extract the alpha channel (transparency) and the object (RGB channels)
|
39 |
+
alpha_channel = image[:, :, 3]
|
40 |
+
|
41 |
+
# Find the bounding box coordinates of the object
|
42 |
+
coords = cv2.findNonZero(alpha_channel)
|
43 |
+
x, y, width, height = cv2.boundingRect(coords)
|
44 |
+
|
45 |
+
# Calculate the scale factor for resizing
|
46 |
+
original_height, original_width = image.shape[:2]
|
47 |
+
|
48 |
+
if width > height:
|
49 |
+
size = width
|
50 |
+
original_size = original_width
|
51 |
+
else:
|
52 |
+
size = height
|
53 |
+
original_size = original_height
|
54 |
+
|
55 |
+
scale_factor = min(scale_factor, size / (original_size+0.0))
|
56 |
+
|
57 |
+
new_size = scale_factor * original_size
|
58 |
+
scale_factor = new_size / size
|
59 |
+
|
60 |
+
# Calculate the new size based on the scale factor
|
61 |
+
new_width = int(width * scale_factor)
|
62 |
+
new_height = int(height * scale_factor)
|
63 |
+
|
64 |
+
center_x = original_width // 2
|
65 |
+
center_y = original_height // 2
|
66 |
+
|
67 |
+
paste_x = center_x - (new_width // 2)
|
68 |
+
paste_y = center_y - (new_height // 2)
|
69 |
+
|
70 |
+
# Resize the object (RGB channels) to the new size
|
71 |
+
rescaled_object = cv2.resize(image[y:y+height, x:x+width], (new_width, new_height))
|
72 |
+
|
73 |
+
# Create a new RGBA image with the resized image
|
74 |
+
new_image = np.zeros((original_height, original_width, 4), dtype=np.uint8)
|
75 |
+
|
76 |
+
new_image[paste_y:paste_y + new_height, paste_x:paste_x + new_width] = rescaled_object
|
77 |
+
|
78 |
+
return new_image
|
79 |
+
|
80 |
+
class SingleImageDataset(Dataset):
|
81 |
+
def __init__(self,
|
82 |
+
root_dir: str,
|
83 |
+
num_views: int,
|
84 |
+
img_wh: Tuple[int, int],
|
85 |
+
bg_color: str,
|
86 |
+
crop_size: int = 224,
|
87 |
+
single_image: Optional[PIL.Image.Image] = None,
|
88 |
+
num_validation_samples: Optional[int] = None,
|
89 |
+
filepaths: Optional[list] = None,
|
90 |
+
cond_type: Optional[str] = None,
|
91 |
+
prompt_embeds_path: Optional[str] = None,
|
92 |
+
gt_path: Optional[str] = None
|
93 |
+
) -> None:
|
94 |
+
"""Create a dataset from a folder of images.
|
95 |
+
If you pass in a root directory it will be searched for images
|
96 |
+
ending in ext (ext can be a list)
|
97 |
+
"""
|
98 |
+
self.root_dir = root_dir
|
99 |
+
self.num_views = num_views
|
100 |
+
self.img_wh = img_wh
|
101 |
+
self.crop_size = crop_size
|
102 |
+
self.bg_color = bg_color
|
103 |
+
self.cond_type = cond_type
|
104 |
+
self.gt_path = gt_path
|
105 |
+
|
106 |
+
|
107 |
+
if single_image is None:
|
108 |
+
if filepaths is None:
|
109 |
+
# Get a list of all files in the directory
|
110 |
+
file_list = os.listdir(self.root_dir)
|
111 |
+
else:
|
112 |
+
file_list = filepaths
|
113 |
+
|
114 |
+
# Filter the files that end with .png or .jpg
|
115 |
+
self.file_list = [file for file in file_list if file.endswith(('.png', '.jpg', '.webp'))]
|
116 |
+
else:
|
117 |
+
self.file_list = None
|
118 |
+
|
119 |
+
# load all images
|
120 |
+
self.all_images = []
|
121 |
+
self.all_alphas = []
|
122 |
+
bg_color = self.get_bg_color()
|
123 |
+
|
124 |
+
if single_image is not None:
|
125 |
+
image, alpha = self.load_image(None, bg_color, return_type='pt', Imagefile=single_image)
|
126 |
+
self.all_images.append(image)
|
127 |
+
self.all_alphas.append(alpha)
|
128 |
+
else:
|
129 |
+
for file in self.file_list:
|
130 |
+
print(os.path.join(self.root_dir, file))
|
131 |
+
image, alpha = self.load_image(os.path.join(self.root_dir, file), bg_color, return_type='pt')
|
132 |
+
self.all_images.append(image)
|
133 |
+
self.all_alphas.append(alpha)
|
134 |
+
|
135 |
+
|
136 |
+
|
137 |
+
self.all_images = self.all_images[:num_validation_samples]
|
138 |
+
self.all_alphas = self.all_alphas[:num_validation_samples]
|
139 |
+
ic(len(self.all_images))
|
140 |
+
|
141 |
+
try:
|
142 |
+
self.normal_text_embeds = torch.load(f'{prompt_embeds_path}/normal_embeds.pt')
|
143 |
+
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/clr_embeds.pt') # 4view
|
144 |
+
except:
|
145 |
+
self.color_text_embeds = torch.load(f'{prompt_embeds_path}/embeds.pt')
|
146 |
+
self.normal_text_embeds = None
|
147 |
+
|
148 |
+
def __len__(self):
|
149 |
+
return len(self.all_images)
|
150 |
+
|
151 |
+
def get_bg_color(self):
|
152 |
+
if self.bg_color == 'white':
|
153 |
+
bg_color = np.array([1., 1., 1.], dtype=np.float32)
|
154 |
+
elif self.bg_color == 'black':
|
155 |
+
bg_color = np.array([0., 0., 0.], dtype=np.float32)
|
156 |
+
elif self.bg_color == 'gray':
|
157 |
+
bg_color = np.array([0.5, 0.5, 0.5], dtype=np.float32)
|
158 |
+
elif self.bg_color == 'random':
|
159 |
+
bg_color = np.random.rand(3)
|
160 |
+
elif isinstance(self.bg_color, float):
|
161 |
+
bg_color = np.array([self.bg_color] * 3, dtype=np.float32)
|
162 |
+
else:
|
163 |
+
raise NotImplementedError
|
164 |
+
return bg_color
|
165 |
+
|
166 |
+
|
167 |
+
def load_image(self, img_path, bg_color, return_type='np', Imagefile=None):
|
168 |
+
# pil always returns uint8
|
169 |
+
if Imagefile is None:
|
170 |
+
image_input = Image.open(img_path)
|
171 |
+
else:
|
172 |
+
image_input = Imagefile
|
173 |
+
image_size = self.img_wh[0]
|
174 |
+
|
175 |
+
if self.crop_size!=-1:
|
176 |
+
alpha_np = np.asarray(image_input)[:, :, 3]
|
177 |
+
coords = np.stack(np.nonzero(alpha_np), 1)[:, (1, 0)]
|
178 |
+
min_x, min_y = np.min(coords, 0)
|
179 |
+
max_x, max_y = np.max(coords, 0)
|
180 |
+
ref_img_ = image_input.crop((min_x, min_y, max_x, max_y))
|
181 |
+
h, w = ref_img_.height, ref_img_.width
|
182 |
+
scale = self.crop_size / max(h, w)
|
183 |
+
h_, w_ = int(scale * h), int(scale * w)
|
184 |
+
ref_img_ = ref_img_.resize((w_, h_))
|
185 |
+
image_input = add_margin(ref_img_, size=image_size)
|
186 |
+
else:
|
187 |
+
image_input = add_margin(image_input, size=max(image_input.height, image_input.width))
|
188 |
+
image_input = image_input.resize((image_size, image_size))
|
189 |
+
|
190 |
+
# img = scale_and_place_object(img, self.scale_ratio)
|
191 |
+
img = np.array(image_input)
|
192 |
+
img = img.astype(np.float32) / 255. # [0, 1]
|
193 |
+
assert img.shape[-1] == 4 # RGBA
|
194 |
+
|
195 |
+
alpha = img[...,3:4]
|
196 |
+
img = img[...,:3] * alpha + bg_color * (1 - alpha)
|
197 |
+
|
198 |
+
if return_type == "np":
|
199 |
+
pass
|
200 |
+
elif return_type == "pt":
|
201 |
+
img = torch.from_numpy(img)
|
202 |
+
alpha = torch.from_numpy(alpha)
|
203 |
+
else:
|
204 |
+
raise NotImplementedError
|
205 |
+
|
206 |
+
return img, alpha
|
207 |
+
|
208 |
+
|
209 |
+
def __getitem__(self, index):
|
210 |
+
image = self.all_images[index%len(self.all_images)]
|
211 |
+
alpha = self.all_alphas[index%len(self.all_images)]
|
212 |
+
if self.file_list is not None:
|
213 |
+
filename = self.file_list[index%len(self.all_images)].replace(".png", "")
|
214 |
+
else:
|
215 |
+
filename = 'null'
|
216 |
+
img_tensors_in = [
|
217 |
+
image.permute(2, 0, 1)
|
218 |
+
] * self.num_views
|
219 |
+
|
220 |
+
alpha_tensors_in = [
|
221 |
+
alpha.permute(2, 0, 1)
|
222 |
+
] * self.num_views
|
223 |
+
|
224 |
+
img_tensors_in = torch.stack(img_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
225 |
+
alpha_tensors_in = torch.stack(alpha_tensors_in, dim=0).float() # (Nv, 3, H, W)
|
226 |
+
|
227 |
+
if self.gt_path is not None:
|
228 |
+
gt_image = self.gt_images[index%len(self.all_images)]
|
229 |
+
gt_alpha = self.gt_alpha[index%len(self.all_images)]
|
230 |
+
gt_img_tensors_in = [gt_image.permute(2, 0, 1) ] * self.num_views
|
231 |
+
gt_alpha_tensors_in = [gt_alpha.permute(2, 0, 1) ] * self.num_views
|
232 |
+
gt_img_tensors_in = torch.stack(gt_img_tensors_in, dim=0).float()
|
233 |
+
gt_alpha_tensors_in = torch.stack(gt_alpha_tensors_in, dim=0).float()
|
234 |
+
|
235 |
+
normal_prompt_embeddings = self.normal_text_embeds if hasattr(self, 'normal_text_embeds') else None
|
236 |
+
color_prompt_embeddings = self.color_text_embeds if hasattr(self, 'color_text_embeds') else None
|
237 |
+
|
238 |
+
out = {
|
239 |
+
'imgs_in': img_tensors_in,
|
240 |
+
'alphas': alpha_tensors_in,
|
241 |
+
'normal_prompt_embeddings': normal_prompt_embeddings,
|
242 |
+
'color_prompt_embeddings': color_prompt_embeddings,
|
243 |
+
'filename': filename,
|
244 |
+
}
|
245 |
+
|
246 |
+
return out
|
247 |
+
|
248 |
+
|
249 |
+
|
mvdiffusion/models/transformer_mv2d_image.py
ADDED
@@ -0,0 +1,1029 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
25 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
26 |
+
from diffusers.models.embeddings import PatchEmbed
|
27 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
from diffusers.utils.import_utils import is_xformers_available
|
30 |
+
|
31 |
+
from einops import rearrange, repeat
|
32 |
+
import pdb
|
33 |
+
import random
|
34 |
+
|
35 |
+
|
36 |
+
if is_xformers_available():
|
37 |
+
import xformers
|
38 |
+
import xformers.ops
|
39 |
+
else:
|
40 |
+
xformers = None
|
41 |
+
|
42 |
+
def my_repeat(tensor, num_repeats):
|
43 |
+
"""
|
44 |
+
Repeat a tensor along a given dimension
|
45 |
+
"""
|
46 |
+
if len(tensor.shape) == 3:
|
47 |
+
return repeat(tensor, "b d c -> (b v) d c", v=num_repeats)
|
48 |
+
elif len(tensor.shape) == 4:
|
49 |
+
return repeat(tensor, "a b d c -> (a v) b d c", v=num_repeats)
|
50 |
+
|
51 |
+
|
52 |
+
@dataclass
|
53 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
54 |
+
"""
|
55 |
+
The output of [`Transformer2DModel`].
|
56 |
+
|
57 |
+
Args:
|
58 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
59 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
60 |
+
distributions for the unnoised latent pixels.
|
61 |
+
"""
|
62 |
+
|
63 |
+
sample: torch.FloatTensor
|
64 |
+
|
65 |
+
|
66 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
67 |
+
"""
|
68 |
+
A 2D Transformer model for image-like data.
|
69 |
+
|
70 |
+
Parameters:
|
71 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
72 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
73 |
+
in_channels (`int`, *optional*):
|
74 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
75 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
76 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
77 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
78 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
79 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
80 |
+
num_vector_embeds (`int`, *optional*):
|
81 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
82 |
+
Includes the class for the masked latent pixel.
|
83 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
84 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
85 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
86 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
87 |
+
added to the hidden states.
|
88 |
+
|
89 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
90 |
+
attention_bias (`bool`, *optional*):
|
91 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
92 |
+
"""
|
93 |
+
|
94 |
+
@register_to_config
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
num_attention_heads: int = 16,
|
98 |
+
attention_head_dim: int = 88,
|
99 |
+
in_channels: Optional[int] = None,
|
100 |
+
out_channels: Optional[int] = None,
|
101 |
+
num_layers: int = 1,
|
102 |
+
dropout: float = 0.0,
|
103 |
+
norm_num_groups: int = 32,
|
104 |
+
cross_attention_dim: Optional[int] = None,
|
105 |
+
attention_bias: bool = False,
|
106 |
+
sample_size: Optional[int] = None,
|
107 |
+
num_vector_embeds: Optional[int] = None,
|
108 |
+
patch_size: Optional[int] = None,
|
109 |
+
activation_fn: str = "geglu",
|
110 |
+
num_embeds_ada_norm: Optional[int] = None,
|
111 |
+
use_linear_projection: bool = False,
|
112 |
+
only_cross_attention: bool = False,
|
113 |
+
upcast_attention: bool = False,
|
114 |
+
norm_type: str = "layer_norm",
|
115 |
+
norm_elementwise_affine: bool = True,
|
116 |
+
num_views: int = 1,
|
117 |
+
cd_attention_last: bool=False,
|
118 |
+
cd_attention_mid: bool=False,
|
119 |
+
multiview_attention: bool=True,
|
120 |
+
sparse_mv_attention: bool = False,
|
121 |
+
mvcd_attention: bool=False
|
122 |
+
):
|
123 |
+
super().__init__()
|
124 |
+
self.use_linear_projection = use_linear_projection
|
125 |
+
self.num_attention_heads = num_attention_heads
|
126 |
+
self.attention_head_dim = attention_head_dim
|
127 |
+
inner_dim = num_attention_heads * attention_head_dim
|
128 |
+
|
129 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
130 |
+
# Define whether input is continuous or discrete depending on configuration
|
131 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
132 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
133 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
134 |
+
|
135 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
136 |
+
deprecation_message = (
|
137 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
138 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
139 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
140 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
141 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
142 |
+
)
|
143 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
144 |
+
norm_type = "ada_norm"
|
145 |
+
|
146 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
147 |
+
raise ValueError(
|
148 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
149 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
150 |
+
)
|
151 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
152 |
+
raise ValueError(
|
153 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
154 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
155 |
+
)
|
156 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
157 |
+
raise ValueError(
|
158 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
159 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
160 |
+
)
|
161 |
+
|
162 |
+
# 2. Define input layers
|
163 |
+
if self.is_input_continuous:
|
164 |
+
self.in_channels = in_channels
|
165 |
+
|
166 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
167 |
+
if use_linear_projection:
|
168 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
169 |
+
else:
|
170 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
171 |
+
elif self.is_input_vectorized:
|
172 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
173 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
174 |
+
|
175 |
+
self.height = sample_size
|
176 |
+
self.width = sample_size
|
177 |
+
self.num_vector_embeds = num_vector_embeds
|
178 |
+
self.num_latent_pixels = self.height * self.width
|
179 |
+
|
180 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
181 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
182 |
+
)
|
183 |
+
elif self.is_input_patches:
|
184 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
185 |
+
|
186 |
+
self.height = sample_size
|
187 |
+
self.width = sample_size
|
188 |
+
|
189 |
+
self.patch_size = patch_size
|
190 |
+
self.pos_embed = PatchEmbed(
|
191 |
+
height=sample_size,
|
192 |
+
width=sample_size,
|
193 |
+
patch_size=patch_size,
|
194 |
+
in_channels=in_channels,
|
195 |
+
embed_dim=inner_dim,
|
196 |
+
)
|
197 |
+
|
198 |
+
# 3. Define transformers blocks
|
199 |
+
self.transformer_blocks = nn.ModuleList(
|
200 |
+
[
|
201 |
+
BasicMVTransformerBlock(
|
202 |
+
inner_dim,
|
203 |
+
num_attention_heads,
|
204 |
+
attention_head_dim,
|
205 |
+
dropout=dropout,
|
206 |
+
cross_attention_dim=cross_attention_dim,
|
207 |
+
activation_fn=activation_fn,
|
208 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
209 |
+
attention_bias=attention_bias,
|
210 |
+
only_cross_attention=only_cross_attention,
|
211 |
+
upcast_attention=upcast_attention,
|
212 |
+
norm_type=norm_type,
|
213 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
214 |
+
num_views=num_views,
|
215 |
+
cd_attention_last=cd_attention_last,
|
216 |
+
cd_attention_mid=cd_attention_mid,
|
217 |
+
multiview_attention=multiview_attention,
|
218 |
+
sparse_mv_attention=sparse_mv_attention,
|
219 |
+
mvcd_attention=mvcd_attention
|
220 |
+
)
|
221 |
+
for d in range(num_layers)
|
222 |
+
]
|
223 |
+
)
|
224 |
+
|
225 |
+
# 4. Define output layers
|
226 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
227 |
+
if self.is_input_continuous:
|
228 |
+
# TODO: should use out_channels for continuous projections
|
229 |
+
if use_linear_projection:
|
230 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
231 |
+
else:
|
232 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
233 |
+
elif self.is_input_vectorized:
|
234 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
235 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
236 |
+
elif self.is_input_patches:
|
237 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
238 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
239 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
240 |
+
|
241 |
+
def forward(
|
242 |
+
self,
|
243 |
+
hidden_states: torch.Tensor,
|
244 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
245 |
+
timestep: Optional[torch.LongTensor] = None,
|
246 |
+
class_labels: Optional[torch.LongTensor] = None,
|
247 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
248 |
+
attention_mask: Optional[torch.Tensor] = None,
|
249 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
250 |
+
return_dict: bool = True,
|
251 |
+
):
|
252 |
+
"""
|
253 |
+
The [`Transformer2DModel`] forward method.
|
254 |
+
|
255 |
+
Args:
|
256 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
257 |
+
Input `hidden_states`.
|
258 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
259 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
260 |
+
self-attention.
|
261 |
+
timestep ( `torch.LongTensor`, *optional*):
|
262 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
263 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
264 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
265 |
+
`AdaLayerZeroNorm`.
|
266 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
267 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
268 |
+
|
269 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
270 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
271 |
+
|
272 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
273 |
+
above. This bias will be added to the cross-attention scores.
|
274 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
275 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
276 |
+
tuple.
|
277 |
+
|
278 |
+
Returns:
|
279 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
280 |
+
`tuple` where the first element is the sample tensor.
|
281 |
+
"""
|
282 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
283 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
284 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
285 |
+
# expects mask of shape:
|
286 |
+
# [batch, key_tokens]
|
287 |
+
# adds singleton query_tokens dimension:
|
288 |
+
# [batch, 1, key_tokens]
|
289 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
290 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
291 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
292 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
293 |
+
# assume that mask is expressed as:
|
294 |
+
# (1 = keep, 0 = discard)
|
295 |
+
# convert mask into a bias that can be added to attention scores:
|
296 |
+
# (keep = +0, discard = -10000.0)
|
297 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
298 |
+
attention_mask = attention_mask.unsqueeze(1)
|
299 |
+
|
300 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
301 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
302 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
303 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
304 |
+
|
305 |
+
# 1. Input
|
306 |
+
if self.is_input_continuous:
|
307 |
+
batch, _, height, width = hidden_states.shape
|
308 |
+
residual = hidden_states
|
309 |
+
|
310 |
+
hidden_states = self.norm(hidden_states)
|
311 |
+
if not self.use_linear_projection:
|
312 |
+
hidden_states = self.proj_in(hidden_states)
|
313 |
+
inner_dim = hidden_states.shape[1]
|
314 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
315 |
+
else:
|
316 |
+
inner_dim = hidden_states.shape[1]
|
317 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
318 |
+
hidden_states = self.proj_in(hidden_states)
|
319 |
+
elif self.is_input_vectorized:
|
320 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
321 |
+
elif self.is_input_patches:
|
322 |
+
hidden_states = self.pos_embed(hidden_states)
|
323 |
+
|
324 |
+
# 2. Blocks
|
325 |
+
for block in self.transformer_blocks:
|
326 |
+
hidden_states = block(
|
327 |
+
hidden_states,
|
328 |
+
attention_mask=attention_mask,
|
329 |
+
encoder_hidden_states=encoder_hidden_states,
|
330 |
+
encoder_attention_mask=encoder_attention_mask,
|
331 |
+
timestep=timestep,
|
332 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
333 |
+
class_labels=class_labels,
|
334 |
+
)
|
335 |
+
|
336 |
+
# 3. Output
|
337 |
+
if self.is_input_continuous:
|
338 |
+
if not self.use_linear_projection:
|
339 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
340 |
+
hidden_states = self.proj_out(hidden_states)
|
341 |
+
else:
|
342 |
+
hidden_states = self.proj_out(hidden_states)
|
343 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
344 |
+
|
345 |
+
output = hidden_states + residual
|
346 |
+
elif self.is_input_vectorized:
|
347 |
+
hidden_states = self.norm_out(hidden_states)
|
348 |
+
logits = self.out(hidden_states)
|
349 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
350 |
+
logits = logits.permute(0, 2, 1)
|
351 |
+
|
352 |
+
# log(p(x_0))
|
353 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
354 |
+
elif self.is_input_patches:
|
355 |
+
# TODO: cleanup!
|
356 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
357 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
358 |
+
)
|
359 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
360 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
361 |
+
hidden_states = self.proj_out_2(hidden_states)
|
362 |
+
|
363 |
+
# unpatchify
|
364 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
365 |
+
hidden_states = hidden_states.reshape(
|
366 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
367 |
+
)
|
368 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
369 |
+
output = hidden_states.reshape(
|
370 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
371 |
+
)
|
372 |
+
|
373 |
+
if not return_dict:
|
374 |
+
return (output,)
|
375 |
+
|
376 |
+
return TransformerMV2DModelOutput(sample=output)
|
377 |
+
|
378 |
+
|
379 |
+
@maybe_allow_in_graph
|
380 |
+
class BasicMVTransformerBlock(nn.Module):
|
381 |
+
r"""
|
382 |
+
A basic Transformer block.
|
383 |
+
|
384 |
+
Parameters:
|
385 |
+
dim (`int`): The number of channels in the input and output.
|
386 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
387 |
+
attention_head_dim (`int`): The number of channels in each head.
|
388 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
389 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
390 |
+
only_cross_attention (`bool`, *optional*):
|
391 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
392 |
+
double_self_attention (`bool`, *optional*):
|
393 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
394 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
395 |
+
num_embeds_ada_norm (:
|
396 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
397 |
+
attention_bias (:
|
398 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
399 |
+
"""
|
400 |
+
|
401 |
+
def __init__(
|
402 |
+
self,
|
403 |
+
dim: int,
|
404 |
+
num_attention_heads: int,
|
405 |
+
attention_head_dim: int,
|
406 |
+
dropout=0.0,
|
407 |
+
cross_attention_dim: Optional[int] = None,
|
408 |
+
activation_fn: str = "geglu",
|
409 |
+
num_embeds_ada_norm: Optional[int] = None,
|
410 |
+
attention_bias: bool = False,
|
411 |
+
only_cross_attention: bool = False,
|
412 |
+
double_self_attention: bool = False,
|
413 |
+
upcast_attention: bool = False,
|
414 |
+
norm_elementwise_affine: bool = True,
|
415 |
+
norm_type: str = "layer_norm",
|
416 |
+
final_dropout: bool = False,
|
417 |
+
num_views: int = 1,
|
418 |
+
cd_attention_last: bool = False,
|
419 |
+
cd_attention_mid: bool = False,
|
420 |
+
multiview_attention: bool = True,
|
421 |
+
sparse_mv_attention: bool = False,
|
422 |
+
mvcd_attention: bool = False
|
423 |
+
):
|
424 |
+
super().__init__()
|
425 |
+
self.only_cross_attention = only_cross_attention
|
426 |
+
|
427 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
428 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
429 |
+
|
430 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
431 |
+
raise ValueError(
|
432 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
433 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
434 |
+
)
|
435 |
+
|
436 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
437 |
+
# 1. Self-Attn
|
438 |
+
if self.use_ada_layer_norm:
|
439 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
440 |
+
elif self.use_ada_layer_norm_zero:
|
441 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
442 |
+
else:
|
443 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
444 |
+
|
445 |
+
self.multiview_attention = multiview_attention
|
446 |
+
self.sparse_mv_attention = sparse_mv_attention
|
447 |
+
self.mvcd_attention = mvcd_attention
|
448 |
+
|
449 |
+
self.attn1 = CustomAttention(
|
450 |
+
query_dim=dim,
|
451 |
+
heads=num_attention_heads,
|
452 |
+
dim_head=attention_head_dim,
|
453 |
+
dropout=dropout,
|
454 |
+
bias=attention_bias,
|
455 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
456 |
+
upcast_attention=upcast_attention,
|
457 |
+
processor=MVAttnProcessor()
|
458 |
+
)
|
459 |
+
|
460 |
+
# 2. Cross-Attn
|
461 |
+
if cross_attention_dim is not None or double_self_attention:
|
462 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
463 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
464 |
+
# the second cross attention block.
|
465 |
+
self.norm2 = (
|
466 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
467 |
+
if self.use_ada_layer_norm
|
468 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
469 |
+
)
|
470 |
+
self.attn2 = Attention(
|
471 |
+
query_dim=dim,
|
472 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
473 |
+
heads=num_attention_heads,
|
474 |
+
dim_head=attention_head_dim,
|
475 |
+
dropout=dropout,
|
476 |
+
bias=attention_bias,
|
477 |
+
upcast_attention=upcast_attention,
|
478 |
+
) # is self-attn if encoder_hidden_states is none
|
479 |
+
else:
|
480 |
+
self.norm2 = None
|
481 |
+
self.attn2 = None
|
482 |
+
|
483 |
+
# 3. Feed-forward
|
484 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
485 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
486 |
+
|
487 |
+
# let chunk size default to None
|
488 |
+
self._chunk_size = None
|
489 |
+
self._chunk_dim = 0
|
490 |
+
|
491 |
+
self.num_views = num_views
|
492 |
+
|
493 |
+
self.cd_attention_last = cd_attention_last
|
494 |
+
|
495 |
+
if self.cd_attention_last:
|
496 |
+
# Joint task -Attn
|
497 |
+
self.attn_joint_last = CustomJointAttention(
|
498 |
+
query_dim=dim,
|
499 |
+
heads=num_attention_heads,
|
500 |
+
dim_head=attention_head_dim,
|
501 |
+
dropout=dropout,
|
502 |
+
bias=attention_bias,
|
503 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
504 |
+
upcast_attention=upcast_attention,
|
505 |
+
processor=JointAttnProcessor()
|
506 |
+
)
|
507 |
+
nn.init.zeros_(self.attn_joint_last.to_out[0].weight.data)
|
508 |
+
self.norm_joint_last = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
509 |
+
|
510 |
+
|
511 |
+
self.cd_attention_mid = cd_attention_mid
|
512 |
+
|
513 |
+
if self.cd_attention_mid:
|
514 |
+
print("cross-domain attn in the middle")
|
515 |
+
# Joint task -Attn
|
516 |
+
self.attn_joint_mid = CustomJointAttention(
|
517 |
+
query_dim=dim,
|
518 |
+
heads=num_attention_heads,
|
519 |
+
dim_head=attention_head_dim,
|
520 |
+
dropout=dropout,
|
521 |
+
bias=attention_bias,
|
522 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
523 |
+
upcast_attention=upcast_attention,
|
524 |
+
processor=JointAttnProcessor()
|
525 |
+
)
|
526 |
+
nn.init.zeros_(self.attn_joint_mid.to_out[0].weight.data)
|
527 |
+
self.norm_joint_mid = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
528 |
+
|
529 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
530 |
+
# Sets chunk feed-forward
|
531 |
+
self._chunk_size = chunk_size
|
532 |
+
self._chunk_dim = dim
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self,
|
536 |
+
hidden_states: torch.FloatTensor,
|
537 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
538 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
539 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
540 |
+
timestep: Optional[torch.LongTensor] = None,
|
541 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
542 |
+
class_labels: Optional[torch.LongTensor] = None,
|
543 |
+
):
|
544 |
+
assert attention_mask is None # not supported yet
|
545 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
546 |
+
# 1. Self-Attention
|
547 |
+
if self.use_ada_layer_norm:
|
548 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
549 |
+
elif self.use_ada_layer_norm_zero:
|
550 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
551 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
552 |
+
)
|
553 |
+
else:
|
554 |
+
norm_hidden_states = self.norm1(hidden_states)
|
555 |
+
|
556 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
557 |
+
|
558 |
+
attn_output = self.attn1(
|
559 |
+
norm_hidden_states,
|
560 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
561 |
+
attention_mask=attention_mask,
|
562 |
+
num_views=self.num_views,
|
563 |
+
multiview_attention=self.multiview_attention,
|
564 |
+
sparse_mv_attention=self.sparse_mv_attention,
|
565 |
+
mvcd_attention=self.mvcd_attention,
|
566 |
+
**cross_attention_kwargs,
|
567 |
+
)
|
568 |
+
|
569 |
+
|
570 |
+
if self.use_ada_layer_norm_zero:
|
571 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
572 |
+
hidden_states = attn_output + hidden_states
|
573 |
+
|
574 |
+
# joint attention twice
|
575 |
+
if self.cd_attention_mid:
|
576 |
+
norm_hidden_states = (
|
577 |
+
self.norm_joint_mid(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_mid(hidden_states)
|
578 |
+
)
|
579 |
+
hidden_states = self.attn_joint_mid(norm_hidden_states) + hidden_states
|
580 |
+
|
581 |
+
# 2. Cross-Attention
|
582 |
+
if self.attn2 is not None:
|
583 |
+
norm_hidden_states = (
|
584 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
585 |
+
)
|
586 |
+
|
587 |
+
attn_output = self.attn2(
|
588 |
+
norm_hidden_states,
|
589 |
+
encoder_hidden_states=encoder_hidden_states,
|
590 |
+
attention_mask=encoder_attention_mask,
|
591 |
+
**cross_attention_kwargs,
|
592 |
+
)
|
593 |
+
hidden_states = attn_output + hidden_states
|
594 |
+
|
595 |
+
# 3. Feed-forward
|
596 |
+
norm_hidden_states = self.norm3(hidden_states)
|
597 |
+
|
598 |
+
if self.use_ada_layer_norm_zero:
|
599 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
600 |
+
|
601 |
+
if self._chunk_size is not None:
|
602 |
+
# "feed_forward_chunk_size" can be used to save memory
|
603 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
604 |
+
raise ValueError(
|
605 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
606 |
+
)
|
607 |
+
|
608 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
609 |
+
ff_output = torch.cat(
|
610 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
611 |
+
dim=self._chunk_dim,
|
612 |
+
)
|
613 |
+
else:
|
614 |
+
ff_output = self.ff(norm_hidden_states)
|
615 |
+
|
616 |
+
if self.use_ada_layer_norm_zero:
|
617 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
618 |
+
|
619 |
+
hidden_states = ff_output + hidden_states
|
620 |
+
|
621 |
+
if self.cd_attention_last:
|
622 |
+
norm_hidden_states = (
|
623 |
+
self.norm_joint_last(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_last(hidden_states)
|
624 |
+
)
|
625 |
+
hidden_states = self.attn_joint_last(norm_hidden_states) + hidden_states
|
626 |
+
|
627 |
+
return hidden_states
|
628 |
+
|
629 |
+
|
630 |
+
class CustomAttention(Attention):
|
631 |
+
def set_use_memory_efficient_attention_xformers(
|
632 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
633 |
+
):
|
634 |
+
processor = XFormersMVAttnProcessor()
|
635 |
+
self.set_processor(processor)
|
636 |
+
# print("using xformers attention processor")
|
637 |
+
|
638 |
+
|
639 |
+
class CustomJointAttention(Attention):
|
640 |
+
def set_use_memory_efficient_attention_xformers(
|
641 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
642 |
+
):
|
643 |
+
processor = XFormersJointAttnProcessor()
|
644 |
+
self.set_processor(processor)
|
645 |
+
# print("using xformers attention processor")
|
646 |
+
|
647 |
+
class MVAttnProcessor:
|
648 |
+
r"""
|
649 |
+
Default processor for performing attention-related computations.
|
650 |
+
"""
|
651 |
+
|
652 |
+
def __call__(
|
653 |
+
self,
|
654 |
+
attn: Attention,
|
655 |
+
hidden_states,
|
656 |
+
encoder_hidden_states=None,
|
657 |
+
attention_mask=None,
|
658 |
+
temb=None,
|
659 |
+
num_views=1,
|
660 |
+
multiview_attention=True
|
661 |
+
):
|
662 |
+
residual = hidden_states
|
663 |
+
|
664 |
+
if attn.spatial_norm is not None:
|
665 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
666 |
+
|
667 |
+
input_ndim = hidden_states.ndim
|
668 |
+
|
669 |
+
if input_ndim == 4:
|
670 |
+
batch_size, channel, height, width = hidden_states.shape
|
671 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
672 |
+
|
673 |
+
batch_size, sequence_length, _ = (
|
674 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
675 |
+
)
|
676 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
677 |
+
|
678 |
+
if attn.group_norm is not None:
|
679 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
680 |
+
|
681 |
+
query = attn.to_q(hidden_states)
|
682 |
+
|
683 |
+
if encoder_hidden_states is None:
|
684 |
+
encoder_hidden_states = hidden_states
|
685 |
+
elif attn.norm_cross:
|
686 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
687 |
+
|
688 |
+
key = attn.to_k(encoder_hidden_states)
|
689 |
+
value = attn.to_v(encoder_hidden_states)
|
690 |
+
|
691 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
692 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
693 |
+
# pdb.set_trace()
|
694 |
+
# multi-view self-attention
|
695 |
+
if multiview_attention:
|
696 |
+
if num_views <= 6:
|
697 |
+
# after use xformer; possible to train with 6 views
|
698 |
+
key = rearrange(key, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
699 |
+
value = rearrange(value, "(b t) d c -> b (t d) c", t=num_views).repeat_interleave(num_views, dim=0)
|
700 |
+
else:# apply sparse attention
|
701 |
+
pass
|
702 |
+
# print("use sparse attention")
|
703 |
+
# # seems that the sparse random sampling cause problems
|
704 |
+
# # don't use random sampling, just fix the indexes
|
705 |
+
# onekey = rearrange(key, "(b t) d c -> b t d c", t=num_views)
|
706 |
+
# onevalue = rearrange(value, "(b t) d c -> b t d c", t=num_views)
|
707 |
+
# allkeys = []
|
708 |
+
# allvalues = []
|
709 |
+
# all_indexes = {
|
710 |
+
# 0 : [0, 2, 3, 4],
|
711 |
+
# 1: [0, 1, 3, 5],
|
712 |
+
# 2: [0, 2, 3, 4],
|
713 |
+
# 3: [0, 2, 3, 4],
|
714 |
+
# 4: [0, 2, 3, 4],
|
715 |
+
# 5: [0, 1, 3, 5]
|
716 |
+
# }
|
717 |
+
# for jj in range(num_views):
|
718 |
+
# # valid_index = [x for x in range(0, num_views) if x!= jj]
|
719 |
+
# # indexes = random.sample(valid_index, 3) + [jj] + [0]
|
720 |
+
# indexes = all_indexes[jj]
|
721 |
+
|
722 |
+
# indexes = torch.tensor(indexes).long().to(key.device)
|
723 |
+
# allkeys.append(onekey[:, indexes])
|
724 |
+
# allvalues.append(onevalue[:, indexes])
|
725 |
+
# keys = torch.stack(allkeys, dim=1) # checked, should be dim=1
|
726 |
+
# values = torch.stack(allvalues, dim=1)
|
727 |
+
# key = rearrange(keys, 'b t f d c -> (b t) (f d) c')
|
728 |
+
# value = rearrange(values, 'b t f d c -> (b t) (f d) c')
|
729 |
+
|
730 |
+
|
731 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
732 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
733 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
734 |
+
|
735 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
736 |
+
hidden_states = torch.bmm(attention_probs, value)
|
737 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
738 |
+
|
739 |
+
# linear proj
|
740 |
+
hidden_states = attn.to_out[0](hidden_states)
|
741 |
+
# dropout
|
742 |
+
hidden_states = attn.to_out[1](hidden_states)
|
743 |
+
|
744 |
+
if input_ndim == 4:
|
745 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
746 |
+
|
747 |
+
if attn.residual_connection:
|
748 |
+
hidden_states = hidden_states + residual
|
749 |
+
|
750 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
751 |
+
|
752 |
+
return hidden_states
|
753 |
+
|
754 |
+
|
755 |
+
class XFormersMVAttnProcessor:
|
756 |
+
r"""
|
757 |
+
Default processor for performing attention-related computations.
|
758 |
+
"""
|
759 |
+
|
760 |
+
def __call__(
|
761 |
+
self,
|
762 |
+
attn: Attention,
|
763 |
+
hidden_states,
|
764 |
+
encoder_hidden_states=None,
|
765 |
+
attention_mask=None,
|
766 |
+
temb=None,
|
767 |
+
num_views=1.,
|
768 |
+
multiview_attention=True,
|
769 |
+
sparse_mv_attention=False,
|
770 |
+
mvcd_attention=False,
|
771 |
+
):
|
772 |
+
residual = hidden_states
|
773 |
+
|
774 |
+
if attn.spatial_norm is not None:
|
775 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
776 |
+
|
777 |
+
input_ndim = hidden_states.ndim
|
778 |
+
|
779 |
+
if input_ndim == 4:
|
780 |
+
batch_size, channel, height, width = hidden_states.shape
|
781 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
782 |
+
|
783 |
+
batch_size, sequence_length, _ = (
|
784 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
785 |
+
)
|
786 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
787 |
+
|
788 |
+
# from yuancheng; here attention_mask is None
|
789 |
+
if attention_mask is not None:
|
790 |
+
# expand our mask's singleton query_tokens dimension:
|
791 |
+
# [batch*heads, 1, key_tokens] ->
|
792 |
+
# [batch*heads, query_tokens, key_tokens]
|
793 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
794 |
+
# [batch*heads, query_tokens, key_tokens]
|
795 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
796 |
+
_, query_tokens, _ = hidden_states.shape
|
797 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
798 |
+
|
799 |
+
if attn.group_norm is not None:
|
800 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
801 |
+
|
802 |
+
query = attn.to_q(hidden_states)
|
803 |
+
|
804 |
+
if encoder_hidden_states is None:
|
805 |
+
encoder_hidden_states = hidden_states
|
806 |
+
elif attn.norm_cross:
|
807 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
808 |
+
|
809 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
810 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
811 |
+
|
812 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
813 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
814 |
+
# pdb.set_trace()
|
815 |
+
# multi-view self-attention
|
816 |
+
if multiview_attention:
|
817 |
+
if not sparse_mv_attention:
|
818 |
+
key = my_repeat(rearrange(key_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
819 |
+
value = my_repeat(rearrange(value_raw, "(b t) d c -> b (t d) c", t=num_views), num_views)
|
820 |
+
else:
|
821 |
+
key_front = my_repeat(rearrange(key_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views) # [(b t), d, c]
|
822 |
+
value_front = my_repeat(rearrange(value_raw, "(b t) d c -> b t d c", t=num_views)[:, 0, :, :], num_views)
|
823 |
+
key = torch.cat([key_front, key_raw], dim=1) # shape (b t) (2 d) c
|
824 |
+
value = torch.cat([value_front, value_raw], dim=1)
|
825 |
+
|
826 |
+
if mvcd_attention:
|
827 |
+
# memory efficient, cross domain attention
|
828 |
+
key_0, key_1 = torch.chunk(key_raw, dim=0, chunks=2) # keys shape (b t) d c
|
829 |
+
value_0, value_1 = torch.chunk(value_raw, dim=0, chunks=2)
|
830 |
+
key_cross = torch.concat([key_1, key_0], dim=0)
|
831 |
+
value_cross = torch.concat([value_1, value_0], dim=0) # shape (b t) d c
|
832 |
+
key = torch.cat([key, key_cross], dim=1)
|
833 |
+
value = torch.cat([value, value_cross], dim=1) # shape (b t) (t+1 d) c
|
834 |
+
else:
|
835 |
+
# print("don't use multiview attention.")
|
836 |
+
key = key_raw
|
837 |
+
value = value_raw
|
838 |
+
|
839 |
+
query = attn.head_to_batch_dim(query)
|
840 |
+
key = attn.head_to_batch_dim(key)
|
841 |
+
value = attn.head_to_batch_dim(value)
|
842 |
+
|
843 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
844 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
845 |
+
|
846 |
+
# linear proj
|
847 |
+
hidden_states = attn.to_out[0](hidden_states)
|
848 |
+
# dropout
|
849 |
+
hidden_states = attn.to_out[1](hidden_states)
|
850 |
+
|
851 |
+
if input_ndim == 4:
|
852 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
853 |
+
|
854 |
+
if attn.residual_connection:
|
855 |
+
hidden_states = hidden_states + residual
|
856 |
+
|
857 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
858 |
+
|
859 |
+
return hidden_states
|
860 |
+
|
861 |
+
|
862 |
+
|
863 |
+
class XFormersJointAttnProcessor:
|
864 |
+
r"""
|
865 |
+
Default processor for performing attention-related computations.
|
866 |
+
"""
|
867 |
+
|
868 |
+
def __call__(
|
869 |
+
self,
|
870 |
+
attn: Attention,
|
871 |
+
hidden_states,
|
872 |
+
encoder_hidden_states=None,
|
873 |
+
attention_mask=None,
|
874 |
+
temb=None,
|
875 |
+
num_tasks=2
|
876 |
+
):
|
877 |
+
|
878 |
+
residual = hidden_states
|
879 |
+
|
880 |
+
if attn.spatial_norm is not None:
|
881 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
882 |
+
|
883 |
+
input_ndim = hidden_states.ndim
|
884 |
+
|
885 |
+
if input_ndim == 4:
|
886 |
+
batch_size, channel, height, width = hidden_states.shape
|
887 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
888 |
+
|
889 |
+
batch_size, sequence_length, _ = (
|
890 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
891 |
+
)
|
892 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
893 |
+
|
894 |
+
# from yuancheng; here attention_mask is None
|
895 |
+
if attention_mask is not None:
|
896 |
+
# expand our mask's singleton query_tokens dimension:
|
897 |
+
# [batch*heads, 1, key_tokens] ->
|
898 |
+
# [batch*heads, query_tokens, key_tokens]
|
899 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
900 |
+
# [batch*heads, query_tokens, key_tokens]
|
901 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
902 |
+
_, query_tokens, _ = hidden_states.shape
|
903 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
904 |
+
|
905 |
+
if attn.group_norm is not None:
|
906 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
907 |
+
|
908 |
+
query = attn.to_q(hidden_states)
|
909 |
+
|
910 |
+
if encoder_hidden_states is None:
|
911 |
+
encoder_hidden_states = hidden_states
|
912 |
+
elif attn.norm_cross:
|
913 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
914 |
+
|
915 |
+
key = attn.to_k(encoder_hidden_states)
|
916 |
+
value = attn.to_v(encoder_hidden_states)
|
917 |
+
|
918 |
+
assert num_tasks == 2 # only support two tasks now
|
919 |
+
|
920 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
921 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
922 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
923 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
924 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
925 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
926 |
+
|
927 |
+
|
928 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
929 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
930 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
931 |
+
|
932 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
933 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
934 |
+
|
935 |
+
# linear proj
|
936 |
+
hidden_states = attn.to_out[0](hidden_states)
|
937 |
+
# dropout
|
938 |
+
hidden_states = attn.to_out[1](hidden_states)
|
939 |
+
|
940 |
+
if input_ndim == 4:
|
941 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
942 |
+
|
943 |
+
if attn.residual_connection:
|
944 |
+
hidden_states = hidden_states + residual
|
945 |
+
|
946 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
947 |
+
|
948 |
+
return hidden_states
|
949 |
+
|
950 |
+
|
951 |
+
class JointAttnProcessor:
|
952 |
+
r"""
|
953 |
+
Default processor for performing attention-related computations.
|
954 |
+
"""
|
955 |
+
|
956 |
+
def __call__(
|
957 |
+
self,
|
958 |
+
attn: Attention,
|
959 |
+
hidden_states,
|
960 |
+
encoder_hidden_states=None,
|
961 |
+
attention_mask=None,
|
962 |
+
temb=None,
|
963 |
+
num_tasks=2
|
964 |
+
):
|
965 |
+
|
966 |
+
residual = hidden_states
|
967 |
+
|
968 |
+
if attn.spatial_norm is not None:
|
969 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
970 |
+
|
971 |
+
input_ndim = hidden_states.ndim
|
972 |
+
|
973 |
+
if input_ndim == 4:
|
974 |
+
batch_size, channel, height, width = hidden_states.shape
|
975 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
976 |
+
|
977 |
+
batch_size, sequence_length, _ = (
|
978 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
979 |
+
)
|
980 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
981 |
+
|
982 |
+
|
983 |
+
if attn.group_norm is not None:
|
984 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
985 |
+
|
986 |
+
query = attn.to_q(hidden_states)
|
987 |
+
|
988 |
+
if encoder_hidden_states is None:
|
989 |
+
encoder_hidden_states = hidden_states
|
990 |
+
elif attn.norm_cross:
|
991 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
992 |
+
|
993 |
+
key = attn.to_k(encoder_hidden_states)
|
994 |
+
value = attn.to_v(encoder_hidden_states)
|
995 |
+
|
996 |
+
assert num_tasks == 2 # only support two tasks now
|
997 |
+
|
998 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
999 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
1000 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
1001 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
1002 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
1003 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
1004 |
+
|
1005 |
+
|
1006 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1007 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1008 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1009 |
+
|
1010 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
1011 |
+
hidden_states = torch.bmm(attention_probs, value)
|
1012 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1013 |
+
|
1014 |
+
# linear proj
|
1015 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1016 |
+
# dropout
|
1017 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1018 |
+
|
1019 |
+
if input_ndim == 4:
|
1020 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1021 |
+
|
1022 |
+
if attn.residual_connection:
|
1023 |
+
hidden_states = hidden_states + residual
|
1024 |
+
|
1025 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1026 |
+
|
1027 |
+
return hidden_states
|
1028 |
+
|
1029 |
+
|
mvdiffusion/models/transformer_mv2d_rowwise.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
25 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
26 |
+
from diffusers.models.embeddings import PatchEmbed
|
27 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
from diffusers.utils.import_utils import is_xformers_available
|
30 |
+
|
31 |
+
from einops import rearrange
|
32 |
+
import pdb
|
33 |
+
import random
|
34 |
+
import math
|
35 |
+
|
36 |
+
|
37 |
+
if is_xformers_available():
|
38 |
+
import xformers
|
39 |
+
import xformers.ops
|
40 |
+
else:
|
41 |
+
xformers = None
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
46 |
+
"""
|
47 |
+
The output of [`Transformer2DModel`].
|
48 |
+
|
49 |
+
Args:
|
50 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
51 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
52 |
+
distributions for the unnoised latent pixels.
|
53 |
+
"""
|
54 |
+
|
55 |
+
sample: torch.FloatTensor
|
56 |
+
|
57 |
+
|
58 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
59 |
+
"""
|
60 |
+
A 2D Transformer model for image-like data.
|
61 |
+
|
62 |
+
Parameters:
|
63 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
64 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
65 |
+
in_channels (`int`, *optional*):
|
66 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
67 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
68 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
69 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
70 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
71 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
72 |
+
num_vector_embeds (`int`, *optional*):
|
73 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
74 |
+
Includes the class for the masked latent pixel.
|
75 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
76 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
77 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
78 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
79 |
+
added to the hidden states.
|
80 |
+
|
81 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
82 |
+
attention_bias (`bool`, *optional*):
|
83 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
84 |
+
"""
|
85 |
+
|
86 |
+
@register_to_config
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
num_attention_heads: int = 16,
|
90 |
+
attention_head_dim: int = 88,
|
91 |
+
in_channels: Optional[int] = None,
|
92 |
+
out_channels: Optional[int] = None,
|
93 |
+
num_layers: int = 1,
|
94 |
+
dropout: float = 0.0,
|
95 |
+
norm_num_groups: int = 32,
|
96 |
+
cross_attention_dim: Optional[int] = None,
|
97 |
+
attention_bias: bool = False,
|
98 |
+
sample_size: Optional[int] = None,
|
99 |
+
num_vector_embeds: Optional[int] = None,
|
100 |
+
patch_size: Optional[int] = None,
|
101 |
+
activation_fn: str = "geglu",
|
102 |
+
num_embeds_ada_norm: Optional[int] = None,
|
103 |
+
use_linear_projection: bool = False,
|
104 |
+
only_cross_attention: bool = False,
|
105 |
+
upcast_attention: bool = False,
|
106 |
+
norm_type: str = "layer_norm",
|
107 |
+
norm_elementwise_affine: bool = True,
|
108 |
+
num_views: int = 1,
|
109 |
+
cd_attention_last: bool=False,
|
110 |
+
cd_attention_mid: bool=False,
|
111 |
+
multiview_attention: bool=True,
|
112 |
+
sparse_mv_attention: bool = True, # not used
|
113 |
+
mvcd_attention: bool=False
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.use_linear_projection = use_linear_projection
|
117 |
+
self.num_attention_heads = num_attention_heads
|
118 |
+
self.attention_head_dim = attention_head_dim
|
119 |
+
inner_dim = num_attention_heads * attention_head_dim
|
120 |
+
|
121 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
122 |
+
# Define whether input is continuous or discrete depending on configuration
|
123 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
124 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
125 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
126 |
+
|
127 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
128 |
+
deprecation_message = (
|
129 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
130 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
131 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
132 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
133 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
134 |
+
)
|
135 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
136 |
+
norm_type = "ada_norm"
|
137 |
+
|
138 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
139 |
+
raise ValueError(
|
140 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
141 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
142 |
+
)
|
143 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
144 |
+
raise ValueError(
|
145 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
146 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
147 |
+
)
|
148 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
149 |
+
raise ValueError(
|
150 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
151 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
152 |
+
)
|
153 |
+
|
154 |
+
# 2. Define input layers
|
155 |
+
if self.is_input_continuous:
|
156 |
+
self.in_channels = in_channels
|
157 |
+
|
158 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
159 |
+
if use_linear_projection:
|
160 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
161 |
+
else:
|
162 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
163 |
+
elif self.is_input_vectorized:
|
164 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
165 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
166 |
+
|
167 |
+
self.height = sample_size
|
168 |
+
self.width = sample_size
|
169 |
+
self.num_vector_embeds = num_vector_embeds
|
170 |
+
self.num_latent_pixels = self.height * self.width
|
171 |
+
|
172 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
173 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
174 |
+
)
|
175 |
+
elif self.is_input_patches:
|
176 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
177 |
+
|
178 |
+
self.height = sample_size
|
179 |
+
self.width = sample_size
|
180 |
+
|
181 |
+
self.patch_size = patch_size
|
182 |
+
self.pos_embed = PatchEmbed(
|
183 |
+
height=sample_size,
|
184 |
+
width=sample_size,
|
185 |
+
patch_size=patch_size,
|
186 |
+
in_channels=in_channels,
|
187 |
+
embed_dim=inner_dim,
|
188 |
+
)
|
189 |
+
|
190 |
+
# 3. Define transformers blocks
|
191 |
+
self.transformer_blocks = nn.ModuleList(
|
192 |
+
[
|
193 |
+
BasicMVTransformerBlock(
|
194 |
+
inner_dim,
|
195 |
+
num_attention_heads,
|
196 |
+
attention_head_dim,
|
197 |
+
dropout=dropout,
|
198 |
+
cross_attention_dim=cross_attention_dim,
|
199 |
+
activation_fn=activation_fn,
|
200 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
201 |
+
attention_bias=attention_bias,
|
202 |
+
only_cross_attention=only_cross_attention,
|
203 |
+
upcast_attention=upcast_attention,
|
204 |
+
norm_type=norm_type,
|
205 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
206 |
+
num_views=num_views,
|
207 |
+
cd_attention_last=cd_attention_last,
|
208 |
+
cd_attention_mid=cd_attention_mid,
|
209 |
+
multiview_attention=multiview_attention,
|
210 |
+
mvcd_attention=mvcd_attention
|
211 |
+
)
|
212 |
+
for d in range(num_layers)
|
213 |
+
]
|
214 |
+
)
|
215 |
+
|
216 |
+
# 4. Define output layers
|
217 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
218 |
+
if self.is_input_continuous:
|
219 |
+
# TODO: should use out_channels for continuous projections
|
220 |
+
if use_linear_projection:
|
221 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
222 |
+
else:
|
223 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
224 |
+
elif self.is_input_vectorized:
|
225 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
226 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
227 |
+
elif self.is_input_patches:
|
228 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
229 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
230 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
231 |
+
|
232 |
+
def forward(
|
233 |
+
self,
|
234 |
+
hidden_states: torch.Tensor,
|
235 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
236 |
+
timestep: Optional[torch.LongTensor] = None,
|
237 |
+
class_labels: Optional[torch.LongTensor] = None,
|
238 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
239 |
+
attention_mask: Optional[torch.Tensor] = None,
|
240 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
241 |
+
return_dict: bool = True,
|
242 |
+
):
|
243 |
+
"""
|
244 |
+
The [`Transformer2DModel`] forward method.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
248 |
+
Input `hidden_states`.
|
249 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
250 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
251 |
+
self-attention.
|
252 |
+
timestep ( `torch.LongTensor`, *optional*):
|
253 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
254 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
255 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
256 |
+
`AdaLayerZeroNorm`.
|
257 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
258 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
259 |
+
|
260 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
261 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
262 |
+
|
263 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
264 |
+
above. This bias will be added to the cross-attention scores.
|
265 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
266 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
267 |
+
tuple.
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
271 |
+
`tuple` where the first element is the sample tensor.
|
272 |
+
"""
|
273 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
274 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
275 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
276 |
+
# expects mask of shape:
|
277 |
+
# [batch, key_tokens]
|
278 |
+
# adds singleton query_tokens dimension:
|
279 |
+
# [batch, 1, key_tokens]
|
280 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
281 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
282 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
283 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
284 |
+
# assume that mask is expressed as:
|
285 |
+
# (1 = keep, 0 = discard)
|
286 |
+
# convert mask into a bias that can be added to attention scores:
|
287 |
+
# (keep = +0, discard = -10000.0)
|
288 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
289 |
+
attention_mask = attention_mask.unsqueeze(1)
|
290 |
+
|
291 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
292 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
293 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
294 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
295 |
+
|
296 |
+
# 1. Input
|
297 |
+
if self.is_input_continuous:
|
298 |
+
batch, _, height, width = hidden_states.shape
|
299 |
+
residual = hidden_states
|
300 |
+
|
301 |
+
hidden_states = self.norm(hidden_states)
|
302 |
+
if not self.use_linear_projection:
|
303 |
+
hidden_states = self.proj_in(hidden_states)
|
304 |
+
inner_dim = hidden_states.shape[1]
|
305 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
306 |
+
else:
|
307 |
+
inner_dim = hidden_states.shape[1]
|
308 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
309 |
+
hidden_states = self.proj_in(hidden_states)
|
310 |
+
elif self.is_input_vectorized:
|
311 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
312 |
+
elif self.is_input_patches:
|
313 |
+
hidden_states = self.pos_embed(hidden_states)
|
314 |
+
|
315 |
+
# 2. Blocks
|
316 |
+
for block in self.transformer_blocks:
|
317 |
+
hidden_states = block(
|
318 |
+
hidden_states,
|
319 |
+
attention_mask=attention_mask,
|
320 |
+
encoder_hidden_states=encoder_hidden_states,
|
321 |
+
encoder_attention_mask=encoder_attention_mask,
|
322 |
+
timestep=timestep,
|
323 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
324 |
+
class_labels=class_labels,
|
325 |
+
)
|
326 |
+
|
327 |
+
# 3. Output
|
328 |
+
if self.is_input_continuous:
|
329 |
+
if not self.use_linear_projection:
|
330 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
331 |
+
hidden_states = self.proj_out(hidden_states)
|
332 |
+
else:
|
333 |
+
hidden_states = self.proj_out(hidden_states)
|
334 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
335 |
+
|
336 |
+
output = hidden_states + residual
|
337 |
+
elif self.is_input_vectorized:
|
338 |
+
hidden_states = self.norm_out(hidden_states)
|
339 |
+
logits = self.out(hidden_states)
|
340 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
341 |
+
logits = logits.permute(0, 2, 1)
|
342 |
+
|
343 |
+
# log(p(x_0))
|
344 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
345 |
+
elif self.is_input_patches:
|
346 |
+
# TODO: cleanup!
|
347 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
348 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
349 |
+
)
|
350 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
351 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
352 |
+
hidden_states = self.proj_out_2(hidden_states)
|
353 |
+
|
354 |
+
# unpatchify
|
355 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
356 |
+
hidden_states = hidden_states.reshape(
|
357 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
358 |
+
)
|
359 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
360 |
+
output = hidden_states.reshape(
|
361 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
362 |
+
)
|
363 |
+
|
364 |
+
if not return_dict:
|
365 |
+
return (output,)
|
366 |
+
|
367 |
+
return TransformerMV2DModelOutput(sample=output)
|
368 |
+
|
369 |
+
|
370 |
+
@maybe_allow_in_graph
|
371 |
+
class BasicMVTransformerBlock(nn.Module):
|
372 |
+
r"""
|
373 |
+
A basic Transformer block.
|
374 |
+
|
375 |
+
Parameters:
|
376 |
+
dim (`int`): The number of channels in the input and output.
|
377 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
378 |
+
attention_head_dim (`int`): The number of channels in each head.
|
379 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
380 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
381 |
+
only_cross_attention (`bool`, *optional*):
|
382 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
383 |
+
double_self_attention (`bool`, *optional*):
|
384 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
385 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
386 |
+
num_embeds_ada_norm (:
|
387 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
388 |
+
attention_bias (:
|
389 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
390 |
+
"""
|
391 |
+
|
392 |
+
def __init__(
|
393 |
+
self,
|
394 |
+
dim: int,
|
395 |
+
num_attention_heads: int,
|
396 |
+
attention_head_dim: int,
|
397 |
+
dropout=0.0,
|
398 |
+
cross_attention_dim: Optional[int] = None,
|
399 |
+
activation_fn: str = "geglu",
|
400 |
+
num_embeds_ada_norm: Optional[int] = None,
|
401 |
+
attention_bias: bool = False,
|
402 |
+
only_cross_attention: bool = False,
|
403 |
+
double_self_attention: bool = False,
|
404 |
+
upcast_attention: bool = False,
|
405 |
+
norm_elementwise_affine: bool = True,
|
406 |
+
norm_type: str = "layer_norm",
|
407 |
+
final_dropout: bool = False,
|
408 |
+
num_views: int = 1,
|
409 |
+
cd_attention_last: bool = False,
|
410 |
+
cd_attention_mid: bool = False,
|
411 |
+
multiview_attention: bool = True,
|
412 |
+
mvcd_attention: bool = False,
|
413 |
+
rowwise_attention: bool = True
|
414 |
+
):
|
415 |
+
super().__init__()
|
416 |
+
self.only_cross_attention = only_cross_attention
|
417 |
+
|
418 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
419 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
420 |
+
|
421 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
422 |
+
raise ValueError(
|
423 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
424 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
425 |
+
)
|
426 |
+
|
427 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
428 |
+
# 1. Self-Attn
|
429 |
+
if self.use_ada_layer_norm:
|
430 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
431 |
+
elif self.use_ada_layer_norm_zero:
|
432 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
433 |
+
else:
|
434 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
435 |
+
|
436 |
+
self.multiview_attention = multiview_attention
|
437 |
+
self.mvcd_attention = mvcd_attention
|
438 |
+
self.rowwise_attention = multiview_attention and rowwise_attention
|
439 |
+
|
440 |
+
# rowwise multiview attention
|
441 |
+
|
442 |
+
print('INFO: using row wise attention...')
|
443 |
+
|
444 |
+
self.attn1 = CustomAttention(
|
445 |
+
query_dim=dim,
|
446 |
+
heads=num_attention_heads,
|
447 |
+
dim_head=attention_head_dim,
|
448 |
+
dropout=dropout,
|
449 |
+
bias=attention_bias,
|
450 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
451 |
+
upcast_attention=upcast_attention,
|
452 |
+
processor=MVAttnProcessor()
|
453 |
+
)
|
454 |
+
|
455 |
+
# 2. Cross-Attn
|
456 |
+
if cross_attention_dim is not None or double_self_attention:
|
457 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
458 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
459 |
+
# the second cross attention block.
|
460 |
+
self.norm2 = (
|
461 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
462 |
+
if self.use_ada_layer_norm
|
463 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
464 |
+
)
|
465 |
+
self.attn2 = Attention(
|
466 |
+
query_dim=dim,
|
467 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
468 |
+
heads=num_attention_heads,
|
469 |
+
dim_head=attention_head_dim,
|
470 |
+
dropout=dropout,
|
471 |
+
bias=attention_bias,
|
472 |
+
upcast_attention=upcast_attention,
|
473 |
+
) # is self-attn if encoder_hidden_states is none
|
474 |
+
else:
|
475 |
+
self.norm2 = None
|
476 |
+
self.attn2 = None
|
477 |
+
|
478 |
+
# 3. Feed-forward
|
479 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
480 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
481 |
+
|
482 |
+
# let chunk size default to None
|
483 |
+
self._chunk_size = None
|
484 |
+
self._chunk_dim = 0
|
485 |
+
|
486 |
+
self.num_views = num_views
|
487 |
+
|
488 |
+
self.cd_attention_last = cd_attention_last
|
489 |
+
|
490 |
+
if self.cd_attention_last:
|
491 |
+
# Joint task -Attn
|
492 |
+
self.attn_joint = CustomJointAttention(
|
493 |
+
query_dim=dim,
|
494 |
+
heads=num_attention_heads,
|
495 |
+
dim_head=attention_head_dim,
|
496 |
+
dropout=dropout,
|
497 |
+
bias=attention_bias,
|
498 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
499 |
+
upcast_attention=upcast_attention,
|
500 |
+
processor=JointAttnProcessor()
|
501 |
+
)
|
502 |
+
nn.init.zeros_(self.attn_joint.to_out[0].weight.data)
|
503 |
+
self.norm_joint = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
504 |
+
|
505 |
+
|
506 |
+
self.cd_attention_mid = cd_attention_mid
|
507 |
+
|
508 |
+
if self.cd_attention_mid:
|
509 |
+
print("joint twice")
|
510 |
+
# Joint task -Attn
|
511 |
+
self.attn_joint_twice = CustomJointAttention(
|
512 |
+
query_dim=dim,
|
513 |
+
heads=num_attention_heads,
|
514 |
+
dim_head=attention_head_dim,
|
515 |
+
dropout=dropout,
|
516 |
+
bias=attention_bias,
|
517 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
518 |
+
upcast_attention=upcast_attention,
|
519 |
+
processor=JointAttnProcessor()
|
520 |
+
)
|
521 |
+
nn.init.zeros_(self.attn_joint_twice.to_out[0].weight.data)
|
522 |
+
self.norm_joint_twice = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
523 |
+
|
524 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
525 |
+
# Sets chunk feed-forward
|
526 |
+
self._chunk_size = chunk_size
|
527 |
+
self._chunk_dim = dim
|
528 |
+
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
hidden_states: torch.FloatTensor,
|
532 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
533 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
534 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
535 |
+
timestep: Optional[torch.LongTensor] = None,
|
536 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
537 |
+
class_labels: Optional[torch.LongTensor] = None,
|
538 |
+
):
|
539 |
+
assert attention_mask is None # not supported yet
|
540 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
541 |
+
# 1. Self-Attention
|
542 |
+
if self.use_ada_layer_norm:
|
543 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
544 |
+
elif self.use_ada_layer_norm_zero:
|
545 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
546 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
547 |
+
)
|
548 |
+
else:
|
549 |
+
norm_hidden_states = self.norm1(hidden_states)
|
550 |
+
|
551 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
552 |
+
|
553 |
+
attn_output = self.attn1(
|
554 |
+
norm_hidden_states,
|
555 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
multiview_attention=self.multiview_attention,
|
558 |
+
mvcd_attention=self.mvcd_attention,
|
559 |
+
num_views=self.num_views,
|
560 |
+
**cross_attention_kwargs,
|
561 |
+
)
|
562 |
+
|
563 |
+
if self.use_ada_layer_norm_zero:
|
564 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
565 |
+
hidden_states = attn_output + hidden_states
|
566 |
+
|
567 |
+
# joint attention twice
|
568 |
+
if self.cd_attention_mid:
|
569 |
+
norm_hidden_states = (
|
570 |
+
self.norm_joint_twice(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint_twice(hidden_states)
|
571 |
+
)
|
572 |
+
hidden_states = self.attn_joint_twice(norm_hidden_states) + hidden_states
|
573 |
+
|
574 |
+
# 2. Cross-Attention
|
575 |
+
if self.attn2 is not None:
|
576 |
+
norm_hidden_states = (
|
577 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
578 |
+
)
|
579 |
+
|
580 |
+
attn_output = self.attn2(
|
581 |
+
norm_hidden_states,
|
582 |
+
encoder_hidden_states=encoder_hidden_states,
|
583 |
+
attention_mask=encoder_attention_mask,
|
584 |
+
**cross_attention_kwargs,
|
585 |
+
)
|
586 |
+
hidden_states = attn_output + hidden_states
|
587 |
+
|
588 |
+
# 3. Feed-forward
|
589 |
+
norm_hidden_states = self.norm3(hidden_states)
|
590 |
+
|
591 |
+
if self.use_ada_layer_norm_zero:
|
592 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
593 |
+
|
594 |
+
if self._chunk_size is not None:
|
595 |
+
# "feed_forward_chunk_size" can be used to save memory
|
596 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
597 |
+
raise ValueError(
|
598 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
599 |
+
)
|
600 |
+
|
601 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
602 |
+
ff_output = torch.cat(
|
603 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
604 |
+
dim=self._chunk_dim,
|
605 |
+
)
|
606 |
+
else:
|
607 |
+
ff_output = self.ff(norm_hidden_states)
|
608 |
+
|
609 |
+
if self.use_ada_layer_norm_zero:
|
610 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
611 |
+
|
612 |
+
hidden_states = ff_output + hidden_states
|
613 |
+
|
614 |
+
if self.cd_attention_last:
|
615 |
+
norm_hidden_states = (
|
616 |
+
self.norm_joint(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_joint(hidden_states)
|
617 |
+
)
|
618 |
+
hidden_states = self.attn_joint(norm_hidden_states) + hidden_states
|
619 |
+
|
620 |
+
return hidden_states
|
621 |
+
|
622 |
+
|
623 |
+
class CustomAttention(Attention):
|
624 |
+
def set_use_memory_efficient_attention_xformers(
|
625 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
626 |
+
):
|
627 |
+
processor = XFormersMVAttnProcessor()
|
628 |
+
self.set_processor(processor)
|
629 |
+
# print("using xformers attention processor")
|
630 |
+
|
631 |
+
|
632 |
+
class CustomJointAttention(Attention):
|
633 |
+
def set_use_memory_efficient_attention_xformers(
|
634 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
635 |
+
):
|
636 |
+
processor = XFormersJointAttnProcessor()
|
637 |
+
self.set_processor(processor)
|
638 |
+
# print("using xformers attention processor")
|
639 |
+
|
640 |
+
class MVAttnProcessor:
|
641 |
+
r"""
|
642 |
+
Default processor for performing attention-related computations.
|
643 |
+
"""
|
644 |
+
|
645 |
+
def __call__(
|
646 |
+
self,
|
647 |
+
attn: Attention,
|
648 |
+
hidden_states,
|
649 |
+
encoder_hidden_states=None,
|
650 |
+
attention_mask=None,
|
651 |
+
temb=None,
|
652 |
+
num_views=1,
|
653 |
+
multiview_attention=True
|
654 |
+
):
|
655 |
+
residual = hidden_states
|
656 |
+
|
657 |
+
if attn.spatial_norm is not None:
|
658 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
659 |
+
|
660 |
+
input_ndim = hidden_states.ndim
|
661 |
+
|
662 |
+
if input_ndim == 4:
|
663 |
+
batch_size, channel, height, width = hidden_states.shape
|
664 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
665 |
+
|
666 |
+
batch_size, sequence_length, _ = (
|
667 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
668 |
+
)
|
669 |
+
height = int(math.sqrt(sequence_length))
|
670 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
671 |
+
|
672 |
+
if attn.group_norm is not None:
|
673 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
674 |
+
|
675 |
+
query = attn.to_q(hidden_states)
|
676 |
+
|
677 |
+
if encoder_hidden_states is None:
|
678 |
+
encoder_hidden_states = hidden_states
|
679 |
+
elif attn.norm_cross:
|
680 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
681 |
+
|
682 |
+
key = attn.to_k(encoder_hidden_states)
|
683 |
+
value = attn.to_v(encoder_hidden_states)
|
684 |
+
|
685 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
686 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
687 |
+
# pdb.set_trace()
|
688 |
+
# multi-view self-attention
|
689 |
+
key = rearrange(key, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
690 |
+
value = rearrange(value, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
691 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
692 |
+
|
693 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
694 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
695 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
696 |
+
|
697 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
698 |
+
hidden_states = torch.bmm(attention_probs, value)
|
699 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
700 |
+
|
701 |
+
# linear proj
|
702 |
+
hidden_states = attn.to_out[0](hidden_states)
|
703 |
+
# dropout
|
704 |
+
hidden_states = attn.to_out[1](hidden_states)
|
705 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
706 |
+
if input_ndim == 4:
|
707 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
708 |
+
|
709 |
+
if attn.residual_connection:
|
710 |
+
hidden_states = hidden_states + residual
|
711 |
+
|
712 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
713 |
+
|
714 |
+
return hidden_states
|
715 |
+
|
716 |
+
|
717 |
+
class XFormersMVAttnProcessor:
|
718 |
+
r"""
|
719 |
+
Default processor for performing attention-related computations.
|
720 |
+
"""
|
721 |
+
|
722 |
+
def __call__(
|
723 |
+
self,
|
724 |
+
attn: Attention,
|
725 |
+
hidden_states,
|
726 |
+
encoder_hidden_states=None,
|
727 |
+
attention_mask=None,
|
728 |
+
temb=None,
|
729 |
+
num_views=1,
|
730 |
+
multiview_attention=True,
|
731 |
+
mvcd_attention=False,
|
732 |
+
):
|
733 |
+
residual = hidden_states
|
734 |
+
|
735 |
+
if attn.spatial_norm is not None:
|
736 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
737 |
+
|
738 |
+
input_ndim = hidden_states.ndim
|
739 |
+
|
740 |
+
if input_ndim == 4:
|
741 |
+
batch_size, channel, height, width = hidden_states.shape
|
742 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
743 |
+
|
744 |
+
batch_size, sequence_length, _ = (
|
745 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
746 |
+
)
|
747 |
+
height = int(math.sqrt(sequence_length))
|
748 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
749 |
+
# from yuancheng; here attention_mask is None
|
750 |
+
if attention_mask is not None:
|
751 |
+
# expand our mask's singleton query_tokens dimension:
|
752 |
+
# [batch*heads, 1, key_tokens] ->
|
753 |
+
# [batch*heads, query_tokens, key_tokens]
|
754 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
755 |
+
# [batch*heads, query_tokens, key_tokens]
|
756 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
757 |
+
_, query_tokens, _ = hidden_states.shape
|
758 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
759 |
+
|
760 |
+
if attn.group_norm is not None:
|
761 |
+
print('Warning: using group norm, pay attention to use it in row-wise attention')
|
762 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
763 |
+
|
764 |
+
query = attn.to_q(hidden_states)
|
765 |
+
|
766 |
+
if encoder_hidden_states is None:
|
767 |
+
encoder_hidden_states = hidden_states
|
768 |
+
elif attn.norm_cross:
|
769 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
770 |
+
|
771 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
772 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
773 |
+
|
774 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
775 |
+
# pdb.set_trace()
|
776 |
+
|
777 |
+
key = rearrange(key_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
778 |
+
value = rearrange(value_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
779 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
780 |
+
if mvcd_attention:
|
781 |
+
# memory efficient, cross domain attention
|
782 |
+
key_0, key_1 = torch.chunk(key_raw, dim=0, chunks=2) # keys shape (b t) d c
|
783 |
+
value_0, value_1 = torch.chunk(value_raw, dim=0, chunks=2)
|
784 |
+
key_cross = torch.concat([key_1, key_0], dim=0)
|
785 |
+
value_cross = torch.concat([value_1, value_0], dim=0) # shape (b t) d c
|
786 |
+
key = torch.cat([key, key_cross], dim=1)
|
787 |
+
value = torch.cat([value, value_cross], dim=1) # shape (b t) (t+1 d) c
|
788 |
+
|
789 |
+
|
790 |
+
query = attn.head_to_batch_dim(query) # torch.Size([960, 384, 64])
|
791 |
+
key = attn.head_to_batch_dim(key)
|
792 |
+
value = attn.head_to_batch_dim(value)
|
793 |
+
|
794 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
795 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
796 |
+
|
797 |
+
# linear proj
|
798 |
+
hidden_states = attn.to_out[0](hidden_states)
|
799 |
+
# dropout
|
800 |
+
hidden_states = attn.to_out[1](hidden_states)
|
801 |
+
# print(hidden_states.shape)
|
802 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
803 |
+
if input_ndim == 4:
|
804 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
805 |
+
|
806 |
+
if attn.residual_connection:
|
807 |
+
hidden_states = hidden_states + residual
|
808 |
+
|
809 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
810 |
+
|
811 |
+
return hidden_states
|
812 |
+
|
813 |
+
|
814 |
+
class XFormersJointAttnProcessor:
|
815 |
+
r"""
|
816 |
+
Default processor for performing attention-related computations.
|
817 |
+
"""
|
818 |
+
|
819 |
+
def __call__(
|
820 |
+
self,
|
821 |
+
attn: Attention,
|
822 |
+
hidden_states,
|
823 |
+
encoder_hidden_states=None,
|
824 |
+
attention_mask=None,
|
825 |
+
temb=None,
|
826 |
+
num_tasks=2
|
827 |
+
):
|
828 |
+
|
829 |
+
residual = hidden_states
|
830 |
+
|
831 |
+
if attn.spatial_norm is not None:
|
832 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
833 |
+
|
834 |
+
input_ndim = hidden_states.ndim
|
835 |
+
|
836 |
+
if input_ndim == 4:
|
837 |
+
batch_size, channel, height, width = hidden_states.shape
|
838 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
839 |
+
|
840 |
+
batch_size, sequence_length, _ = (
|
841 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
842 |
+
)
|
843 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
844 |
+
|
845 |
+
# from yuancheng; here attention_mask is None
|
846 |
+
if attention_mask is not None:
|
847 |
+
# expand our mask's singleton query_tokens dimension:
|
848 |
+
# [batch*heads, 1, key_tokens] ->
|
849 |
+
# [batch*heads, query_tokens, key_tokens]
|
850 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
851 |
+
# [batch*heads, query_tokens, key_tokens]
|
852 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
853 |
+
_, query_tokens, _ = hidden_states.shape
|
854 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
855 |
+
|
856 |
+
if attn.group_norm is not None:
|
857 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
858 |
+
|
859 |
+
query = attn.to_q(hidden_states)
|
860 |
+
|
861 |
+
if encoder_hidden_states is None:
|
862 |
+
encoder_hidden_states = hidden_states
|
863 |
+
elif attn.norm_cross:
|
864 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
865 |
+
|
866 |
+
key = attn.to_k(encoder_hidden_states)
|
867 |
+
value = attn.to_v(encoder_hidden_states)
|
868 |
+
|
869 |
+
assert num_tasks == 2 # only support two tasks now
|
870 |
+
|
871 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
872 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
873 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
874 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
875 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
876 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
877 |
+
|
878 |
+
|
879 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
880 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
881 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
882 |
+
|
883 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
884 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
885 |
+
|
886 |
+
# linear proj
|
887 |
+
hidden_states = attn.to_out[0](hidden_states)
|
888 |
+
# dropout
|
889 |
+
hidden_states = attn.to_out[1](hidden_states)
|
890 |
+
|
891 |
+
if input_ndim == 4:
|
892 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
893 |
+
|
894 |
+
if attn.residual_connection:
|
895 |
+
hidden_states = hidden_states + residual
|
896 |
+
|
897 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
898 |
+
|
899 |
+
return hidden_states
|
900 |
+
|
901 |
+
|
902 |
+
class JointAttnProcessor:
|
903 |
+
r"""
|
904 |
+
Default processor for performing attention-related computations.
|
905 |
+
"""
|
906 |
+
|
907 |
+
def __call__(
|
908 |
+
self,
|
909 |
+
attn: Attention,
|
910 |
+
hidden_states,
|
911 |
+
encoder_hidden_states=None,
|
912 |
+
attention_mask=None,
|
913 |
+
temb=None,
|
914 |
+
num_tasks=2
|
915 |
+
):
|
916 |
+
|
917 |
+
residual = hidden_states
|
918 |
+
|
919 |
+
if attn.spatial_norm is not None:
|
920 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
921 |
+
|
922 |
+
input_ndim = hidden_states.ndim
|
923 |
+
|
924 |
+
if input_ndim == 4:
|
925 |
+
batch_size, channel, height, width = hidden_states.shape
|
926 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
927 |
+
|
928 |
+
batch_size, sequence_length, _ = (
|
929 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
930 |
+
)
|
931 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
932 |
+
|
933 |
+
|
934 |
+
if attn.group_norm is not None:
|
935 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
936 |
+
|
937 |
+
query = attn.to_q(hidden_states)
|
938 |
+
|
939 |
+
if encoder_hidden_states is None:
|
940 |
+
encoder_hidden_states = hidden_states
|
941 |
+
elif attn.norm_cross:
|
942 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
943 |
+
|
944 |
+
key = attn.to_k(encoder_hidden_states)
|
945 |
+
value = attn.to_v(encoder_hidden_states)
|
946 |
+
|
947 |
+
assert num_tasks == 2 # only support two tasks now
|
948 |
+
|
949 |
+
key_0, key_1 = torch.chunk(key, dim=0, chunks=2) # keys shape (b t) d c
|
950 |
+
value_0, value_1 = torch.chunk(value, dim=0, chunks=2)
|
951 |
+
key = torch.cat([key_0, key_1], dim=1) # (b t) 2d c
|
952 |
+
value = torch.cat([value_0, value_1], dim=1) # (b t) 2d c
|
953 |
+
key = torch.cat([key]*2, dim=0) # ( 2 b t) 2d c
|
954 |
+
value = torch.cat([value]*2, dim=0) # (2 b t) 2d c
|
955 |
+
|
956 |
+
|
957 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
958 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
959 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
960 |
+
|
961 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
962 |
+
hidden_states = torch.bmm(attention_probs, value)
|
963 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
964 |
+
|
965 |
+
# linear proj
|
966 |
+
hidden_states = attn.to_out[0](hidden_states)
|
967 |
+
# dropout
|
968 |
+
hidden_states = attn.to_out[1](hidden_states)
|
969 |
+
|
970 |
+
if input_ndim == 4:
|
971 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
972 |
+
|
973 |
+
if attn.residual_connection:
|
974 |
+
hidden_states = hidden_states + residual
|
975 |
+
|
976 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
977 |
+
|
978 |
+
return hidden_states
|
mvdiffusion/models/transformer_mv2d_self_rowwise.py
ADDED
@@ -0,0 +1,1038 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, Optional
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.models.embeddings import ImagePositionalEmbeddings
|
23 |
+
from diffusers.utils import BaseOutput, deprecate
|
24 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
25 |
+
from diffusers.models.attention import FeedForward, AdaLayerNorm, AdaLayerNormZero, Attention
|
26 |
+
from diffusers.models.embeddings import PatchEmbed
|
27 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
29 |
+
from diffusers.utils.import_utils import is_xformers_available
|
30 |
+
|
31 |
+
from einops import rearrange
|
32 |
+
import pdb
|
33 |
+
import random
|
34 |
+
import math
|
35 |
+
|
36 |
+
|
37 |
+
if is_xformers_available():
|
38 |
+
import xformers
|
39 |
+
import xformers.ops
|
40 |
+
else:
|
41 |
+
xformers = None
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class TransformerMV2DModelOutput(BaseOutput):
|
46 |
+
"""
|
47 |
+
The output of [`Transformer2DModel`].
|
48 |
+
|
49 |
+
Args:
|
50 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
51 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
52 |
+
distributions for the unnoised latent pixels.
|
53 |
+
"""
|
54 |
+
|
55 |
+
sample: torch.FloatTensor
|
56 |
+
|
57 |
+
|
58 |
+
class TransformerMV2DModel(ModelMixin, ConfigMixin):
|
59 |
+
"""
|
60 |
+
A 2D Transformer model for image-like data.
|
61 |
+
|
62 |
+
Parameters:
|
63 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
64 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
65 |
+
in_channels (`int`, *optional*):
|
66 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
67 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
68 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
69 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
70 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
71 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
72 |
+
num_vector_embeds (`int`, *optional*):
|
73 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
74 |
+
Includes the class for the masked latent pixel.
|
75 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
76 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
77 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
78 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
79 |
+
added to the hidden states.
|
80 |
+
|
81 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
82 |
+
attention_bias (`bool`, *optional*):
|
83 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
84 |
+
"""
|
85 |
+
|
86 |
+
@register_to_config
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
num_attention_heads: int = 16,
|
90 |
+
attention_head_dim: int = 88,
|
91 |
+
in_channels: Optional[int] = None,
|
92 |
+
out_channels: Optional[int] = None,
|
93 |
+
num_layers: int = 1,
|
94 |
+
dropout: float = 0.0,
|
95 |
+
norm_num_groups: int = 32,
|
96 |
+
cross_attention_dim: Optional[int] = None,
|
97 |
+
attention_bias: bool = False,
|
98 |
+
sample_size: Optional[int] = None,
|
99 |
+
num_vector_embeds: Optional[int] = None,
|
100 |
+
patch_size: Optional[int] = None,
|
101 |
+
activation_fn: str = "geglu",
|
102 |
+
num_embeds_ada_norm: Optional[int] = None,
|
103 |
+
use_linear_projection: bool = False,
|
104 |
+
only_cross_attention: bool = False,
|
105 |
+
upcast_attention: bool = False,
|
106 |
+
norm_type: str = "layer_norm",
|
107 |
+
norm_elementwise_affine: bool = True,
|
108 |
+
num_views: int = 1,
|
109 |
+
cd_attention_mid: bool=False,
|
110 |
+
cd_attention_last: bool=False,
|
111 |
+
multiview_attention: bool=True,
|
112 |
+
sparse_mv_attention: bool = True, # not used
|
113 |
+
mvcd_attention: bool=False,
|
114 |
+
use_dino: bool=False
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
self.use_linear_projection = use_linear_projection
|
118 |
+
self.num_attention_heads = num_attention_heads
|
119 |
+
self.attention_head_dim = attention_head_dim
|
120 |
+
inner_dim = num_attention_heads * attention_head_dim
|
121 |
+
|
122 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
123 |
+
# Define whether input is continuous or discrete depending on configuration
|
124 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
125 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
126 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
127 |
+
|
128 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
129 |
+
deprecation_message = (
|
130 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
131 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
132 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
133 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
134 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
135 |
+
)
|
136 |
+
deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
|
137 |
+
norm_type = "ada_norm"
|
138 |
+
|
139 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
140 |
+
raise ValueError(
|
141 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
142 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
143 |
+
)
|
144 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
145 |
+
raise ValueError(
|
146 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
147 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
148 |
+
)
|
149 |
+
elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
|
150 |
+
raise ValueError(
|
151 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
152 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
153 |
+
)
|
154 |
+
|
155 |
+
# 2. Define input layers
|
156 |
+
if self.is_input_continuous:
|
157 |
+
self.in_channels = in_channels
|
158 |
+
|
159 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
160 |
+
if use_linear_projection:
|
161 |
+
self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
|
162 |
+
else:
|
163 |
+
self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
164 |
+
elif self.is_input_vectorized:
|
165 |
+
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
|
166 |
+
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"
|
167 |
+
|
168 |
+
self.height = sample_size
|
169 |
+
self.width = sample_size
|
170 |
+
self.num_vector_embeds = num_vector_embeds
|
171 |
+
self.num_latent_pixels = self.height * self.width
|
172 |
+
|
173 |
+
self.latent_image_embedding = ImagePositionalEmbeddings(
|
174 |
+
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
|
175 |
+
)
|
176 |
+
elif self.is_input_patches:
|
177 |
+
assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
178 |
+
|
179 |
+
self.height = sample_size
|
180 |
+
self.width = sample_size
|
181 |
+
|
182 |
+
self.patch_size = patch_size
|
183 |
+
self.pos_embed = PatchEmbed(
|
184 |
+
height=sample_size,
|
185 |
+
width=sample_size,
|
186 |
+
patch_size=patch_size,
|
187 |
+
in_channels=in_channels,
|
188 |
+
embed_dim=inner_dim,
|
189 |
+
)
|
190 |
+
|
191 |
+
# 3. Define transformers blocks
|
192 |
+
self.transformer_blocks = nn.ModuleList(
|
193 |
+
[
|
194 |
+
BasicMVTransformerBlock(
|
195 |
+
inner_dim,
|
196 |
+
num_attention_heads,
|
197 |
+
attention_head_dim,
|
198 |
+
dropout=dropout,
|
199 |
+
cross_attention_dim=cross_attention_dim,
|
200 |
+
activation_fn=activation_fn,
|
201 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
202 |
+
attention_bias=attention_bias,
|
203 |
+
only_cross_attention=only_cross_attention,
|
204 |
+
upcast_attention=upcast_attention,
|
205 |
+
norm_type=norm_type,
|
206 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
207 |
+
num_views=num_views,
|
208 |
+
cd_attention_last=cd_attention_last,
|
209 |
+
cd_attention_mid=cd_attention_mid,
|
210 |
+
multiview_attention=multiview_attention,
|
211 |
+
mvcd_attention=mvcd_attention,
|
212 |
+
use_dino=use_dino
|
213 |
+
)
|
214 |
+
for d in range(num_layers)
|
215 |
+
]
|
216 |
+
)
|
217 |
+
|
218 |
+
# 4. Define output layers
|
219 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
220 |
+
if self.is_input_continuous:
|
221 |
+
# TODO: should use out_channels for continuous projections
|
222 |
+
if use_linear_projection:
|
223 |
+
self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
|
224 |
+
else:
|
225 |
+
self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
226 |
+
elif self.is_input_vectorized:
|
227 |
+
self.norm_out = nn.LayerNorm(inner_dim)
|
228 |
+
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
|
229 |
+
elif self.is_input_patches:
|
230 |
+
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
231 |
+
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
|
232 |
+
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
|
233 |
+
|
234 |
+
def forward(
|
235 |
+
self,
|
236 |
+
hidden_states: torch.Tensor,
|
237 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
238 |
+
dino_feature: Optional[torch.Tensor] = None,
|
239 |
+
timestep: Optional[torch.LongTensor] = None,
|
240 |
+
class_labels: Optional[torch.LongTensor] = None,
|
241 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
242 |
+
attention_mask: Optional[torch.Tensor] = None,
|
243 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
244 |
+
return_dict: bool = True,
|
245 |
+
):
|
246 |
+
"""
|
247 |
+
The [`Transformer2DModel`] forward method.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
251 |
+
Input `hidden_states`.
|
252 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
253 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
254 |
+
self-attention.
|
255 |
+
timestep ( `torch.LongTensor`, *optional*):
|
256 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
257 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
258 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
259 |
+
`AdaLayerZeroNorm`.
|
260 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
261 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
262 |
+
|
263 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
264 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
265 |
+
|
266 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
267 |
+
above. This bias will be added to the cross-attention scores.
|
268 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
269 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
270 |
+
tuple.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
274 |
+
`tuple` where the first element is the sample tensor.
|
275 |
+
"""
|
276 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
277 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
278 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
279 |
+
# expects mask of shape:
|
280 |
+
# [batch, key_tokens]
|
281 |
+
# adds singleton query_tokens dimension:
|
282 |
+
# [batch, 1, key_tokens]
|
283 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
284 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
285 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
286 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
287 |
+
# assume that mask is expressed as:
|
288 |
+
# (1 = keep, 0 = discard)
|
289 |
+
# convert mask into a bias that can be added to attention scores:
|
290 |
+
# (keep = +0, discard = -10000.0)
|
291 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
292 |
+
attention_mask = attention_mask.unsqueeze(1)
|
293 |
+
|
294 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
295 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
296 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
297 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
298 |
+
|
299 |
+
# 1. Input
|
300 |
+
if self.is_input_continuous:
|
301 |
+
batch, _, height, width = hidden_states.shape
|
302 |
+
residual = hidden_states
|
303 |
+
|
304 |
+
hidden_states = self.norm(hidden_states)
|
305 |
+
if not self.use_linear_projection:
|
306 |
+
hidden_states = self.proj_in(hidden_states)
|
307 |
+
inner_dim = hidden_states.shape[1]
|
308 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
309 |
+
else:
|
310 |
+
inner_dim = hidden_states.shape[1]
|
311 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
|
312 |
+
hidden_states = self.proj_in(hidden_states)
|
313 |
+
elif self.is_input_vectorized:
|
314 |
+
hidden_states = self.latent_image_embedding(hidden_states)
|
315 |
+
elif self.is_input_patches:
|
316 |
+
hidden_states = self.pos_embed(hidden_states)
|
317 |
+
|
318 |
+
# 2. Blocks
|
319 |
+
for block in self.transformer_blocks:
|
320 |
+
hidden_states = block(
|
321 |
+
hidden_states,
|
322 |
+
attention_mask=attention_mask,
|
323 |
+
encoder_hidden_states=encoder_hidden_states,
|
324 |
+
dino_feature=dino_feature,
|
325 |
+
encoder_attention_mask=encoder_attention_mask,
|
326 |
+
timestep=timestep,
|
327 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
328 |
+
class_labels=class_labels,
|
329 |
+
)
|
330 |
+
|
331 |
+
# 3. Output
|
332 |
+
if self.is_input_continuous:
|
333 |
+
if not self.use_linear_projection:
|
334 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
335 |
+
hidden_states = self.proj_out(hidden_states)
|
336 |
+
else:
|
337 |
+
hidden_states = self.proj_out(hidden_states)
|
338 |
+
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
|
339 |
+
|
340 |
+
output = hidden_states + residual
|
341 |
+
elif self.is_input_vectorized:
|
342 |
+
hidden_states = self.norm_out(hidden_states)
|
343 |
+
logits = self.out(hidden_states)
|
344 |
+
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
|
345 |
+
logits = logits.permute(0, 2, 1)
|
346 |
+
|
347 |
+
# log(p(x_0))
|
348 |
+
output = F.log_softmax(logits.double(), dim=1).float()
|
349 |
+
elif self.is_input_patches:
|
350 |
+
# TODO: cleanup!
|
351 |
+
conditioning = self.transformer_blocks[0].norm1.emb(
|
352 |
+
timestep, class_labels, hidden_dtype=hidden_states.dtype
|
353 |
+
)
|
354 |
+
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
|
355 |
+
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
|
356 |
+
hidden_states = self.proj_out_2(hidden_states)
|
357 |
+
|
358 |
+
# unpatchify
|
359 |
+
height = width = int(hidden_states.shape[1] ** 0.5)
|
360 |
+
hidden_states = hidden_states.reshape(
|
361 |
+
shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
|
362 |
+
)
|
363 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
364 |
+
output = hidden_states.reshape(
|
365 |
+
shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
|
366 |
+
)
|
367 |
+
|
368 |
+
if not return_dict:
|
369 |
+
return (output,)
|
370 |
+
|
371 |
+
return TransformerMV2DModelOutput(sample=output)
|
372 |
+
|
373 |
+
|
374 |
+
@maybe_allow_in_graph
|
375 |
+
class BasicMVTransformerBlock(nn.Module):
|
376 |
+
r"""
|
377 |
+
A basic Transformer block.
|
378 |
+
|
379 |
+
Parameters:
|
380 |
+
dim (`int`): The number of channels in the input and output.
|
381 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
382 |
+
attention_head_dim (`int`): The number of channels in each head.
|
383 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
384 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
385 |
+
only_cross_attention (`bool`, *optional*):
|
386 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
387 |
+
double_self_attention (`bool`, *optional*):
|
388 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
389 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
390 |
+
num_embeds_ada_norm (:
|
391 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
392 |
+
attention_bias (:
|
393 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
394 |
+
"""
|
395 |
+
|
396 |
+
def __init__(
|
397 |
+
self,
|
398 |
+
dim: int,
|
399 |
+
num_attention_heads: int,
|
400 |
+
attention_head_dim: int,
|
401 |
+
dropout=0.0,
|
402 |
+
cross_attention_dim: Optional[int] = None,
|
403 |
+
activation_fn: str = "geglu",
|
404 |
+
num_embeds_ada_norm: Optional[int] = None,
|
405 |
+
attention_bias: bool = False,
|
406 |
+
only_cross_attention: bool = False,
|
407 |
+
double_self_attention: bool = False,
|
408 |
+
upcast_attention: bool = False,
|
409 |
+
norm_elementwise_affine: bool = True,
|
410 |
+
norm_type: str = "layer_norm",
|
411 |
+
final_dropout: bool = False,
|
412 |
+
num_views: int = 1,
|
413 |
+
cd_attention_last: bool = False,
|
414 |
+
cd_attention_mid: bool = False,
|
415 |
+
multiview_attention: bool = True,
|
416 |
+
mvcd_attention: bool = False,
|
417 |
+
rowwise_attention: bool = True,
|
418 |
+
use_dino: bool = False
|
419 |
+
):
|
420 |
+
super().__init__()
|
421 |
+
self.only_cross_attention = only_cross_attention
|
422 |
+
|
423 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
424 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
425 |
+
|
426 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
427 |
+
raise ValueError(
|
428 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
429 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
430 |
+
)
|
431 |
+
|
432 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
433 |
+
# 1. Self-Attn
|
434 |
+
if self.use_ada_layer_norm:
|
435 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
436 |
+
elif self.use_ada_layer_norm_zero:
|
437 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
438 |
+
else:
|
439 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
440 |
+
|
441 |
+
self.multiview_attention = multiview_attention
|
442 |
+
self.mvcd_attention = mvcd_attention
|
443 |
+
self.cd_attention_mid = cd_attention_mid
|
444 |
+
self.rowwise_attention = multiview_attention and rowwise_attention
|
445 |
+
|
446 |
+
if mvcd_attention and (not cd_attention_mid):
|
447 |
+
# add cross domain attn to self attn
|
448 |
+
self.attn1 = CustomJointAttention(
|
449 |
+
query_dim=dim,
|
450 |
+
heads=num_attention_heads,
|
451 |
+
dim_head=attention_head_dim,
|
452 |
+
dropout=dropout,
|
453 |
+
bias=attention_bias,
|
454 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
455 |
+
upcast_attention=upcast_attention,
|
456 |
+
processor=JointAttnProcessor()
|
457 |
+
)
|
458 |
+
else:
|
459 |
+
self.attn1 = Attention(
|
460 |
+
query_dim=dim,
|
461 |
+
heads=num_attention_heads,
|
462 |
+
dim_head=attention_head_dim,
|
463 |
+
dropout=dropout,
|
464 |
+
bias=attention_bias,
|
465 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
466 |
+
upcast_attention=upcast_attention
|
467 |
+
)
|
468 |
+
# 1.1 rowwise multiview attention
|
469 |
+
if self.rowwise_attention:
|
470 |
+
# print('INFO: using self+row_wise mv attention...')
|
471 |
+
self.norm_mv = (
|
472 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
473 |
+
if self.use_ada_layer_norm
|
474 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
475 |
+
)
|
476 |
+
self.attn_mv = CustomAttention(
|
477 |
+
query_dim=dim,
|
478 |
+
heads=num_attention_heads,
|
479 |
+
dim_head=attention_head_dim,
|
480 |
+
dropout=dropout,
|
481 |
+
bias=attention_bias,
|
482 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
483 |
+
upcast_attention=upcast_attention,
|
484 |
+
processor=MVAttnProcessor()
|
485 |
+
)
|
486 |
+
nn.init.zeros_(self.attn_mv.to_out[0].weight.data)
|
487 |
+
else:
|
488 |
+
self.norm_mv = None
|
489 |
+
self.attn_mv = None
|
490 |
+
|
491 |
+
# # 1.2 rowwise cross-domain attn
|
492 |
+
# if mvcd_attention:
|
493 |
+
# self.attn_joint = CustomJointAttention(
|
494 |
+
# query_dim=dim,
|
495 |
+
# heads=num_attention_heads,
|
496 |
+
# dim_head=attention_head_dim,
|
497 |
+
# dropout=dropout,
|
498 |
+
# bias=attention_bias,
|
499 |
+
# cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
500 |
+
# upcast_attention=upcast_attention,
|
501 |
+
# processor=JointAttnProcessor()
|
502 |
+
# )
|
503 |
+
# nn.init.zeros_(self.attn_joint.to_out[0].weight.data)
|
504 |
+
# self.norm_joint = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
505 |
+
# else:
|
506 |
+
# self.attn_joint = None
|
507 |
+
# self.norm_joint = None
|
508 |
+
|
509 |
+
# 2. Cross-Attn
|
510 |
+
if cross_attention_dim is not None or double_self_attention:
|
511 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
512 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
513 |
+
# the second cross attention block.
|
514 |
+
self.norm2 = (
|
515 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
516 |
+
if self.use_ada_layer_norm
|
517 |
+
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
518 |
+
)
|
519 |
+
self.attn2 = Attention(
|
520 |
+
query_dim=dim,
|
521 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
522 |
+
heads=num_attention_heads,
|
523 |
+
dim_head=attention_head_dim,
|
524 |
+
dropout=dropout,
|
525 |
+
bias=attention_bias,
|
526 |
+
upcast_attention=upcast_attention,
|
527 |
+
) # is self-attn if encoder_hidden_states is none
|
528 |
+
else:
|
529 |
+
self.norm2 = None
|
530 |
+
self.attn2 = None
|
531 |
+
|
532 |
+
# 3. Feed-forward
|
533 |
+
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
|
534 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout)
|
535 |
+
|
536 |
+
# let chunk size default to None
|
537 |
+
self._chunk_size = None
|
538 |
+
self._chunk_dim = 0
|
539 |
+
|
540 |
+
self.num_views = num_views
|
541 |
+
|
542 |
+
|
543 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int):
|
544 |
+
# Sets chunk feed-forward
|
545 |
+
self._chunk_size = chunk_size
|
546 |
+
self._chunk_dim = dim
|
547 |
+
|
548 |
+
def forward(
|
549 |
+
self,
|
550 |
+
hidden_states: torch.FloatTensor,
|
551 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
552 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
553 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
554 |
+
timestep: Optional[torch.LongTensor] = None,
|
555 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
556 |
+
class_labels: Optional[torch.LongTensor] = None,
|
557 |
+
dino_feature: Optional[torch.FloatTensor] = None
|
558 |
+
):
|
559 |
+
assert attention_mask is None # not supported yet
|
560 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
561 |
+
# 1. Self-Attention
|
562 |
+
if self.use_ada_layer_norm:
|
563 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
564 |
+
elif self.use_ada_layer_norm_zero:
|
565 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
566 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
567 |
+
)
|
568 |
+
else:
|
569 |
+
norm_hidden_states = self.norm1(hidden_states)
|
570 |
+
|
571 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
572 |
+
|
573 |
+
attn_output = self.attn1(
|
574 |
+
norm_hidden_states,
|
575 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
576 |
+
attention_mask=attention_mask,
|
577 |
+
# multiview_attention=self.multiview_attention,
|
578 |
+
# mvcd_attention=self.mvcd_attention,
|
579 |
+
**cross_attention_kwargs,
|
580 |
+
)
|
581 |
+
|
582 |
+
|
583 |
+
if self.use_ada_layer_norm_zero:
|
584 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
585 |
+
hidden_states = attn_output + hidden_states
|
586 |
+
|
587 |
+
# import pdb;pdb.set_trace()
|
588 |
+
# 1.1 row wise multiview attention
|
589 |
+
if self.rowwise_attention:
|
590 |
+
norm_hidden_states = (
|
591 |
+
self.norm_mv(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_mv(hidden_states)
|
592 |
+
)
|
593 |
+
attn_output = self.attn_mv(
|
594 |
+
norm_hidden_states,
|
595 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
596 |
+
attention_mask=attention_mask,
|
597 |
+
num_views=self.num_views,
|
598 |
+
multiview_attention=self.multiview_attention,
|
599 |
+
cd_attention_mid=self.cd_attention_mid,
|
600 |
+
**cross_attention_kwargs,
|
601 |
+
)
|
602 |
+
hidden_states = attn_output + hidden_states
|
603 |
+
|
604 |
+
|
605 |
+
# 2. Cross-Attention
|
606 |
+
if self.attn2 is not None:
|
607 |
+
norm_hidden_states = (
|
608 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
609 |
+
)
|
610 |
+
|
611 |
+
attn_output = self.attn2(
|
612 |
+
norm_hidden_states,
|
613 |
+
encoder_hidden_states=encoder_hidden_states,
|
614 |
+
attention_mask=encoder_attention_mask,
|
615 |
+
**cross_attention_kwargs,
|
616 |
+
)
|
617 |
+
hidden_states = attn_output + hidden_states
|
618 |
+
|
619 |
+
# 3. Feed-forward
|
620 |
+
norm_hidden_states = self.norm3(hidden_states)
|
621 |
+
|
622 |
+
if self.use_ada_layer_norm_zero:
|
623 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
624 |
+
|
625 |
+
if self._chunk_size is not None:
|
626 |
+
# "feed_forward_chunk_size" can be used to save memory
|
627 |
+
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
628 |
+
raise ValueError(
|
629 |
+
f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
630 |
+
)
|
631 |
+
|
632 |
+
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
633 |
+
ff_output = torch.cat(
|
634 |
+
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
635 |
+
dim=self._chunk_dim,
|
636 |
+
)
|
637 |
+
else:
|
638 |
+
ff_output = self.ff(norm_hidden_states)
|
639 |
+
|
640 |
+
if self.use_ada_layer_norm_zero:
|
641 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
642 |
+
|
643 |
+
hidden_states = ff_output + hidden_states
|
644 |
+
|
645 |
+
return hidden_states
|
646 |
+
|
647 |
+
|
648 |
+
class CustomAttention(Attention):
|
649 |
+
def set_use_memory_efficient_attention_xformers(
|
650 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
651 |
+
):
|
652 |
+
processor = XFormersMVAttnProcessor()
|
653 |
+
self.set_processor(processor)
|
654 |
+
# print("using xformers attention processor")
|
655 |
+
|
656 |
+
|
657 |
+
class CustomJointAttention(Attention):
|
658 |
+
def set_use_memory_efficient_attention_xformers(
|
659 |
+
self, use_memory_efficient_attention_xformers: bool, *args, **kwargs
|
660 |
+
):
|
661 |
+
processor = XFormersJointAttnProcessor()
|
662 |
+
self.set_processor(processor)
|
663 |
+
# print("using xformers attention processor")
|
664 |
+
|
665 |
+
class MVAttnProcessor:
|
666 |
+
r"""
|
667 |
+
Default processor for performing attention-related computations.
|
668 |
+
"""
|
669 |
+
|
670 |
+
def __call__(
|
671 |
+
self,
|
672 |
+
attn: Attention,
|
673 |
+
hidden_states,
|
674 |
+
encoder_hidden_states=None,
|
675 |
+
attention_mask=None,
|
676 |
+
temb=None,
|
677 |
+
num_views=1,
|
678 |
+
cd_attention_mid=False
|
679 |
+
):
|
680 |
+
residual = hidden_states
|
681 |
+
|
682 |
+
if attn.spatial_norm is not None:
|
683 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
684 |
+
|
685 |
+
input_ndim = hidden_states.ndim
|
686 |
+
|
687 |
+
if input_ndim == 4:
|
688 |
+
batch_size, channel, height, width = hidden_states.shape
|
689 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
690 |
+
|
691 |
+
batch_size, sequence_length, _ = (
|
692 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
693 |
+
)
|
694 |
+
height = int(math.sqrt(sequence_length))
|
695 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
696 |
+
|
697 |
+
if attn.group_norm is not None:
|
698 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
699 |
+
|
700 |
+
query = attn.to_q(hidden_states)
|
701 |
+
|
702 |
+
if encoder_hidden_states is None:
|
703 |
+
encoder_hidden_states = hidden_states
|
704 |
+
elif attn.norm_cross:
|
705 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
706 |
+
|
707 |
+
key = attn.to_k(encoder_hidden_states)
|
708 |
+
value = attn.to_v(encoder_hidden_states)
|
709 |
+
|
710 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
711 |
+
#([bx4, 1024, 320]) key torch.Size([bx4, 1024, 320]) value torch.Size([bx4, 1024, 320])
|
712 |
+
# pdb.set_trace()
|
713 |
+
# multi-view self-attention
|
714 |
+
def transpose(tensor):
|
715 |
+
tensor = rearrange(tensor, "(b v) (h w) c -> b v h w c", v=num_views, h=height)
|
716 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # b v h w c
|
717 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=3) # b v h 2w c
|
718 |
+
tensor = rearrange(tensor, "b v h w c -> (b h) (v w) c", v=num_views, h=height)
|
719 |
+
return tensor
|
720 |
+
|
721 |
+
if cd_attention_mid:
|
722 |
+
key = transpose(key)
|
723 |
+
value = transpose(value)
|
724 |
+
query = transpose(query)
|
725 |
+
else:
|
726 |
+
key = rearrange(key, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
727 |
+
value = rearrange(value, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
728 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
729 |
+
|
730 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
731 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
732 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
733 |
+
|
734 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
735 |
+
hidden_states = torch.bmm(attention_probs, value)
|
736 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
737 |
+
|
738 |
+
# linear proj
|
739 |
+
hidden_states = attn.to_out[0](hidden_states)
|
740 |
+
# dropout
|
741 |
+
hidden_states = attn.to_out[1](hidden_states)
|
742 |
+
if cd_attention_mid:
|
743 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> b v h w c", v=num_views, h=height)
|
744 |
+
hidden_states_0, hidden_states_1 = torch.chunk(hidden_states, dim=3, chunks=2) # b v h w c
|
745 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) # 2b v h w c
|
746 |
+
hidden_states = rearrange(hidden_states, "b v h w c -> (b v) (h w) c", v=num_views, h=height)
|
747 |
+
else:
|
748 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
749 |
+
if input_ndim == 4:
|
750 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
751 |
+
|
752 |
+
if attn.residual_connection:
|
753 |
+
hidden_states = hidden_states + residual
|
754 |
+
|
755 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
756 |
+
|
757 |
+
return hidden_states
|
758 |
+
|
759 |
+
|
760 |
+
class XFormersMVAttnProcessor:
|
761 |
+
r"""
|
762 |
+
Default processor for performing attention-related computations.
|
763 |
+
"""
|
764 |
+
|
765 |
+
def __call__(
|
766 |
+
self,
|
767 |
+
attn: Attention,
|
768 |
+
hidden_states,
|
769 |
+
encoder_hidden_states=None,
|
770 |
+
attention_mask=None,
|
771 |
+
temb=None,
|
772 |
+
num_views=1,
|
773 |
+
multiview_attention=True,
|
774 |
+
cd_attention_mid=False
|
775 |
+
):
|
776 |
+
# print(num_views)
|
777 |
+
residual = hidden_states
|
778 |
+
|
779 |
+
if attn.spatial_norm is not None:
|
780 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
781 |
+
|
782 |
+
input_ndim = hidden_states.ndim
|
783 |
+
|
784 |
+
if input_ndim == 4:
|
785 |
+
batch_size, channel, height, width = hidden_states.shape
|
786 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
787 |
+
|
788 |
+
batch_size, sequence_length, _ = (
|
789 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
790 |
+
)
|
791 |
+
height = int(math.sqrt(sequence_length))
|
792 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
793 |
+
# from yuancheng; here attention_mask is None
|
794 |
+
if attention_mask is not None:
|
795 |
+
# expand our mask's singleton query_tokens dimension:
|
796 |
+
# [batch*heads, 1, key_tokens] ->
|
797 |
+
# [batch*heads, query_tokens, key_tokens]
|
798 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
799 |
+
# [batch*heads, query_tokens, key_tokens]
|
800 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
801 |
+
_, query_tokens, _ = hidden_states.shape
|
802 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
803 |
+
|
804 |
+
if attn.group_norm is not None:
|
805 |
+
print('Warning: using group norm, pay attention to use it in row-wise attention')
|
806 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
807 |
+
|
808 |
+
query = attn.to_q(hidden_states)
|
809 |
+
|
810 |
+
if encoder_hidden_states is None:
|
811 |
+
encoder_hidden_states = hidden_states
|
812 |
+
elif attn.norm_cross:
|
813 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
814 |
+
|
815 |
+
key_raw = attn.to_k(encoder_hidden_states)
|
816 |
+
value_raw = attn.to_v(encoder_hidden_states)
|
817 |
+
|
818 |
+
# print('query', query.shape, 'key', key.shape, 'value', value.shape)
|
819 |
+
# pdb.set_trace()
|
820 |
+
def transpose(tensor):
|
821 |
+
tensor = rearrange(tensor, "(b v) (h w) c -> b v h w c", v=num_views, h=height)
|
822 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # b v h w c
|
823 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=3) # b v h 2w c
|
824 |
+
tensor = rearrange(tensor, "b v h w c -> (b h) (v w) c", v=num_views, h=height)
|
825 |
+
return tensor
|
826 |
+
# print(mvcd_attention)
|
827 |
+
# import pdb;pdb.set_trace()
|
828 |
+
if cd_attention_mid:
|
829 |
+
key = transpose(key_raw)
|
830 |
+
value = transpose(value_raw)
|
831 |
+
query = transpose(query)
|
832 |
+
else:
|
833 |
+
key = rearrange(key_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
834 |
+
value = rearrange(value_raw, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height)
|
835 |
+
query = rearrange(query, "(b v) (h w) c -> (b h) (v w) c", v=num_views, h=height) # torch.Size([192, 384, 320])
|
836 |
+
|
837 |
+
|
838 |
+
query = attn.head_to_batch_dim(query) # torch.Size([960, 384, 64])
|
839 |
+
key = attn.head_to_batch_dim(key)
|
840 |
+
value = attn.head_to_batch_dim(value)
|
841 |
+
|
842 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
843 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
844 |
+
|
845 |
+
# linear proj
|
846 |
+
hidden_states = attn.to_out[0](hidden_states)
|
847 |
+
# dropout
|
848 |
+
hidden_states = attn.to_out[1](hidden_states)
|
849 |
+
|
850 |
+
if cd_attention_mid:
|
851 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> b v h w c", v=num_views, h=height)
|
852 |
+
hidden_states_0, hidden_states_1 = torch.chunk(hidden_states, dim=3, chunks=2) # b v h w c
|
853 |
+
hidden_states = torch.cat([hidden_states_0, hidden_states_1], dim=0) # 2b v h w c
|
854 |
+
hidden_states = rearrange(hidden_states, "b v h w c -> (b v) (h w) c", v=num_views, h=height)
|
855 |
+
else:
|
856 |
+
hidden_states = rearrange(hidden_states, "(b h) (v w) c -> (b v) (h w) c", v=num_views, h=height)
|
857 |
+
if input_ndim == 4:
|
858 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
859 |
+
|
860 |
+
if attn.residual_connection:
|
861 |
+
hidden_states = hidden_states + residual
|
862 |
+
|
863 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
864 |
+
|
865 |
+
return hidden_states
|
866 |
+
|
867 |
+
|
868 |
+
class XFormersJointAttnProcessor:
|
869 |
+
r"""
|
870 |
+
Default processor for performing attention-related computations.
|
871 |
+
"""
|
872 |
+
|
873 |
+
def __call__(
|
874 |
+
self,
|
875 |
+
attn: Attention,
|
876 |
+
hidden_states,
|
877 |
+
encoder_hidden_states=None,
|
878 |
+
attention_mask=None,
|
879 |
+
temb=None,
|
880 |
+
num_tasks=2
|
881 |
+
):
|
882 |
+
residual = hidden_states
|
883 |
+
|
884 |
+
if attn.spatial_norm is not None:
|
885 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
886 |
+
|
887 |
+
input_ndim = hidden_states.ndim
|
888 |
+
|
889 |
+
if input_ndim == 4:
|
890 |
+
batch_size, channel, height, width = hidden_states.shape
|
891 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
892 |
+
|
893 |
+
batch_size, sequence_length, _ = (
|
894 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
895 |
+
)
|
896 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
897 |
+
|
898 |
+
# from yuancheng; here attention_mask is None
|
899 |
+
if attention_mask is not None:
|
900 |
+
# expand our mask's singleton query_tokens dimension:
|
901 |
+
# [batch*heads, 1, key_tokens] ->
|
902 |
+
# [batch*heads, query_tokens, key_tokens]
|
903 |
+
# so that it can be added as a bias onto the attention scores that xformers computes:
|
904 |
+
# [batch*heads, query_tokens, key_tokens]
|
905 |
+
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
|
906 |
+
_, query_tokens, _ = hidden_states.shape
|
907 |
+
attention_mask = attention_mask.expand(-1, query_tokens, -1)
|
908 |
+
|
909 |
+
if attn.group_norm is not None:
|
910 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
911 |
+
|
912 |
+
query = attn.to_q(hidden_states)
|
913 |
+
|
914 |
+
if encoder_hidden_states is None:
|
915 |
+
encoder_hidden_states = hidden_states
|
916 |
+
elif attn.norm_cross:
|
917 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
918 |
+
|
919 |
+
key = attn.to_k(encoder_hidden_states)
|
920 |
+
value = attn.to_v(encoder_hidden_states)
|
921 |
+
|
922 |
+
assert num_tasks == 2 # only support two tasks now
|
923 |
+
|
924 |
+
def transpose(tensor):
|
925 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # bv hw c
|
926 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=1) # bv 2hw c
|
927 |
+
return tensor
|
928 |
+
key = transpose(key)
|
929 |
+
value = transpose(value)
|
930 |
+
query = transpose(query)
|
931 |
+
# from icecream import ic
|
932 |
+
# ic(key.shape, value.shape, query.shape)
|
933 |
+
# import pdb;pdb.set_trace()
|
934 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
935 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
936 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
937 |
+
|
938 |
+
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask)
|
939 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
940 |
+
|
941 |
+
# linear proj
|
942 |
+
hidden_states = attn.to_out[0](hidden_states)
|
943 |
+
# dropout
|
944 |
+
hidden_states = attn.to_out[1](hidden_states)
|
945 |
+
hidden_states_normal, hidden_states_color = torch.chunk(hidden_states, dim=1, chunks=2)
|
946 |
+
hidden_states = torch.cat([hidden_states_normal, hidden_states_color], dim=0) # 2bv hw c
|
947 |
+
|
948 |
+
if input_ndim == 4:
|
949 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
950 |
+
|
951 |
+
if attn.residual_connection:
|
952 |
+
hidden_states = hidden_states + residual
|
953 |
+
|
954 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
955 |
+
|
956 |
+
return hidden_states
|
957 |
+
|
958 |
+
|
959 |
+
class JointAttnProcessor:
|
960 |
+
r"""
|
961 |
+
Default processor for performing attention-related computations.
|
962 |
+
"""
|
963 |
+
|
964 |
+
def __call__(
|
965 |
+
self,
|
966 |
+
attn: Attention,
|
967 |
+
hidden_states,
|
968 |
+
encoder_hidden_states=None,
|
969 |
+
attention_mask=None,
|
970 |
+
temb=None,
|
971 |
+
num_tasks=2
|
972 |
+
):
|
973 |
+
|
974 |
+
residual = hidden_states
|
975 |
+
|
976 |
+
if attn.spatial_norm is not None:
|
977 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
978 |
+
|
979 |
+
input_ndim = hidden_states.ndim
|
980 |
+
|
981 |
+
if input_ndim == 4:
|
982 |
+
batch_size, channel, height, width = hidden_states.shape
|
983 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
984 |
+
|
985 |
+
batch_size, sequence_length, _ = (
|
986 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
987 |
+
)
|
988 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
989 |
+
|
990 |
+
|
991 |
+
if attn.group_norm is not None:
|
992 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
993 |
+
|
994 |
+
query = attn.to_q(hidden_states)
|
995 |
+
|
996 |
+
if encoder_hidden_states is None:
|
997 |
+
encoder_hidden_states = hidden_states
|
998 |
+
elif attn.norm_cross:
|
999 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
1000 |
+
|
1001 |
+
key = attn.to_k(encoder_hidden_states)
|
1002 |
+
value = attn.to_v(encoder_hidden_states)
|
1003 |
+
|
1004 |
+
assert num_tasks == 2 # only support two tasks now
|
1005 |
+
|
1006 |
+
def transpose(tensor):
|
1007 |
+
tensor_0, tensor_1 = torch.chunk(tensor, dim=0, chunks=2) # bv hw c
|
1008 |
+
tensor = torch.cat([tensor_0, tensor_1], dim=1) # bv 2hw c
|
1009 |
+
return tensor
|
1010 |
+
key = transpose(key)
|
1011 |
+
value = transpose(value)
|
1012 |
+
query = transpose(query)
|
1013 |
+
|
1014 |
+
|
1015 |
+
query = attn.head_to_batch_dim(query).contiguous()
|
1016 |
+
key = attn.head_to_batch_dim(key).contiguous()
|
1017 |
+
value = attn.head_to_batch_dim(value).contiguous()
|
1018 |
+
|
1019 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
1020 |
+
hidden_states = torch.bmm(attention_probs, value)
|
1021 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
1022 |
+
|
1023 |
+
|
1024 |
+
# linear proj
|
1025 |
+
hidden_states = attn.to_out[0](hidden_states)
|
1026 |
+
# dropout
|
1027 |
+
hidden_states = attn.to_out[1](hidden_states)
|
1028 |
+
|
1029 |
+
hidden_states = torch.cat([hidden_states[:, 0], hidden_states[:, 1]], dim=0) # 2bv hw c
|
1030 |
+
if input_ndim == 4:
|
1031 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
1032 |
+
|
1033 |
+
if attn.residual_connection:
|
1034 |
+
hidden_states = hidden_states + residual
|
1035 |
+
|
1036 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
1037 |
+
|
1038 |
+
return hidden_states
|
mvdiffusion/models/unet_mv2d_blocks.py
ADDED
@@ -0,0 +1,971 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, Optional, Tuple
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from diffusers.utils import is_torch_version, logging
|
22 |
+
from diffusers.models.normalization import AdaGroupNorm
|
23 |
+
from diffusers.models.attention_processor import Attention, AttnAddedKVProcessor, AttnAddedKVProcessor2_0
|
24 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
25 |
+
from diffusers.models.resnet import Downsample2D, FirDownsample2D, FirUpsample2D, KDownsample2D, KUpsample2D, ResnetBlock2D, Upsample2D
|
26 |
+
|
27 |
+
from diffusers.models.unets.unet_2d_blocks import DownBlock2D, ResnetDownsampleBlock2D, AttnDownBlock2D, CrossAttnDownBlock2D, SimpleCrossAttnDownBlock2D, SkipDownBlock2D, AttnSkipDownBlock2D, DownEncoderBlock2D, AttnDownEncoderBlock2D, KDownBlock2D, KCrossAttnDownBlock2D
|
28 |
+
from diffusers.models.unets.unet_2d_blocks import UpBlock2D, ResnetUpsampleBlock2D, CrossAttnUpBlock2D, SimpleCrossAttnUpBlock2D, AttnUpBlock2D, SkipUpBlock2D, AttnSkipUpBlock2D, UpDecoderBlock2D, AttnUpDecoderBlock2D, KUpBlock2D, KCrossAttnUpBlock2D
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
32 |
+
|
33 |
+
|
34 |
+
def get_down_block(
|
35 |
+
down_block_type,
|
36 |
+
num_layers,
|
37 |
+
in_channels,
|
38 |
+
out_channels,
|
39 |
+
temb_channels,
|
40 |
+
add_downsample,
|
41 |
+
resnet_eps,
|
42 |
+
resnet_act_fn,
|
43 |
+
transformer_layers_per_block=1,
|
44 |
+
num_attention_heads=None,
|
45 |
+
resnet_groups=None,
|
46 |
+
cross_attention_dim=None,
|
47 |
+
downsample_padding=None,
|
48 |
+
dual_cross_attention=False,
|
49 |
+
use_linear_projection=False,
|
50 |
+
only_cross_attention=False,
|
51 |
+
upcast_attention=False,
|
52 |
+
resnet_time_scale_shift="default",
|
53 |
+
resnet_skip_time_act=False,
|
54 |
+
resnet_out_scale_factor=1.0,
|
55 |
+
cross_attention_norm=None,
|
56 |
+
attention_head_dim=None,
|
57 |
+
downsample_type=None,
|
58 |
+
num_views=1,
|
59 |
+
cd_attention_last: bool = False,
|
60 |
+
cd_attention_mid: bool = False,
|
61 |
+
multiview_attention: bool = True,
|
62 |
+
sparse_mv_attention: bool = False,
|
63 |
+
selfattn_block: str = "custom",
|
64 |
+
mvcd_attention: bool=False,
|
65 |
+
use_dino: bool = False
|
66 |
+
):
|
67 |
+
# If attn head dim is not defined, we default it to the number of heads
|
68 |
+
if attention_head_dim is None:
|
69 |
+
logger.warn(
|
70 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
71 |
+
)
|
72 |
+
attention_head_dim = num_attention_heads
|
73 |
+
|
74 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
75 |
+
if down_block_type == "DownBlock2D":
|
76 |
+
return DownBlock2D(
|
77 |
+
num_layers=num_layers,
|
78 |
+
in_channels=in_channels,
|
79 |
+
out_channels=out_channels,
|
80 |
+
temb_channels=temb_channels,
|
81 |
+
add_downsample=add_downsample,
|
82 |
+
resnet_eps=resnet_eps,
|
83 |
+
resnet_act_fn=resnet_act_fn,
|
84 |
+
resnet_groups=resnet_groups,
|
85 |
+
downsample_padding=downsample_padding,
|
86 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
87 |
+
)
|
88 |
+
elif down_block_type == "ResnetDownsampleBlock2D":
|
89 |
+
return ResnetDownsampleBlock2D(
|
90 |
+
num_layers=num_layers,
|
91 |
+
in_channels=in_channels,
|
92 |
+
out_channels=out_channels,
|
93 |
+
temb_channels=temb_channels,
|
94 |
+
add_downsample=add_downsample,
|
95 |
+
resnet_eps=resnet_eps,
|
96 |
+
resnet_act_fn=resnet_act_fn,
|
97 |
+
resnet_groups=resnet_groups,
|
98 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
99 |
+
skip_time_act=resnet_skip_time_act,
|
100 |
+
output_scale_factor=resnet_out_scale_factor,
|
101 |
+
)
|
102 |
+
elif down_block_type == "AttnDownBlock2D":
|
103 |
+
if add_downsample is False:
|
104 |
+
downsample_type = None
|
105 |
+
else:
|
106 |
+
downsample_type = downsample_type or "conv" # default to 'conv'
|
107 |
+
return AttnDownBlock2D(
|
108 |
+
num_layers=num_layers,
|
109 |
+
in_channels=in_channels,
|
110 |
+
out_channels=out_channels,
|
111 |
+
temb_channels=temb_channels,
|
112 |
+
resnet_eps=resnet_eps,
|
113 |
+
resnet_act_fn=resnet_act_fn,
|
114 |
+
resnet_groups=resnet_groups,
|
115 |
+
downsample_padding=downsample_padding,
|
116 |
+
attention_head_dim=attention_head_dim,
|
117 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
118 |
+
downsample_type=downsample_type,
|
119 |
+
)
|
120 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
121 |
+
if cross_attention_dim is None:
|
122 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
123 |
+
return CrossAttnDownBlock2D(
|
124 |
+
num_layers=num_layers,
|
125 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
126 |
+
in_channels=in_channels,
|
127 |
+
out_channels=out_channels,
|
128 |
+
temb_channels=temb_channels,
|
129 |
+
add_downsample=add_downsample,
|
130 |
+
resnet_eps=resnet_eps,
|
131 |
+
resnet_act_fn=resnet_act_fn,
|
132 |
+
resnet_groups=resnet_groups,
|
133 |
+
downsample_padding=downsample_padding,
|
134 |
+
cross_attention_dim=cross_attention_dim,
|
135 |
+
num_attention_heads=num_attention_heads,
|
136 |
+
dual_cross_attention=dual_cross_attention,
|
137 |
+
use_linear_projection=use_linear_projection,
|
138 |
+
only_cross_attention=only_cross_attention,
|
139 |
+
upcast_attention=upcast_attention,
|
140 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
141 |
+
)
|
142 |
+
# custom MV2D attention block
|
143 |
+
elif down_block_type == "CrossAttnDownBlockMV2D":
|
144 |
+
if cross_attention_dim is None:
|
145 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlockMV2D")
|
146 |
+
return CrossAttnDownBlockMV2D(
|
147 |
+
num_layers=num_layers,
|
148 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
149 |
+
in_channels=in_channels,
|
150 |
+
out_channels=out_channels,
|
151 |
+
temb_channels=temb_channels,
|
152 |
+
add_downsample=add_downsample,
|
153 |
+
resnet_eps=resnet_eps,
|
154 |
+
resnet_act_fn=resnet_act_fn,
|
155 |
+
resnet_groups=resnet_groups,
|
156 |
+
downsample_padding=downsample_padding,
|
157 |
+
cross_attention_dim=cross_attention_dim,
|
158 |
+
num_attention_heads=num_attention_heads,
|
159 |
+
dual_cross_attention=dual_cross_attention,
|
160 |
+
use_linear_projection=use_linear_projection,
|
161 |
+
only_cross_attention=only_cross_attention,
|
162 |
+
upcast_attention=upcast_attention,
|
163 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
164 |
+
num_views=num_views,
|
165 |
+
cd_attention_last=cd_attention_last,
|
166 |
+
cd_attention_mid=cd_attention_mid,
|
167 |
+
multiview_attention=multiview_attention,
|
168 |
+
sparse_mv_attention=sparse_mv_attention,
|
169 |
+
selfattn_block=selfattn_block,
|
170 |
+
mvcd_attention=mvcd_attention,
|
171 |
+
use_dino=use_dino
|
172 |
+
)
|
173 |
+
elif down_block_type == "SimpleCrossAttnDownBlock2D":
|
174 |
+
if cross_attention_dim is None:
|
175 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnDownBlock2D")
|
176 |
+
return SimpleCrossAttnDownBlock2D(
|
177 |
+
num_layers=num_layers,
|
178 |
+
in_channels=in_channels,
|
179 |
+
out_channels=out_channels,
|
180 |
+
temb_channels=temb_channels,
|
181 |
+
add_downsample=add_downsample,
|
182 |
+
resnet_eps=resnet_eps,
|
183 |
+
resnet_act_fn=resnet_act_fn,
|
184 |
+
resnet_groups=resnet_groups,
|
185 |
+
cross_attention_dim=cross_attention_dim,
|
186 |
+
attention_head_dim=attention_head_dim,
|
187 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
188 |
+
skip_time_act=resnet_skip_time_act,
|
189 |
+
output_scale_factor=resnet_out_scale_factor,
|
190 |
+
only_cross_attention=only_cross_attention,
|
191 |
+
cross_attention_norm=cross_attention_norm,
|
192 |
+
)
|
193 |
+
elif down_block_type == "SkipDownBlock2D":
|
194 |
+
return SkipDownBlock2D(
|
195 |
+
num_layers=num_layers,
|
196 |
+
in_channels=in_channels,
|
197 |
+
out_channels=out_channels,
|
198 |
+
temb_channels=temb_channels,
|
199 |
+
add_downsample=add_downsample,
|
200 |
+
resnet_eps=resnet_eps,
|
201 |
+
resnet_act_fn=resnet_act_fn,
|
202 |
+
downsample_padding=downsample_padding,
|
203 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
204 |
+
)
|
205 |
+
elif down_block_type == "AttnSkipDownBlock2D":
|
206 |
+
return AttnSkipDownBlock2D(
|
207 |
+
num_layers=num_layers,
|
208 |
+
in_channels=in_channels,
|
209 |
+
out_channels=out_channels,
|
210 |
+
temb_channels=temb_channels,
|
211 |
+
add_downsample=add_downsample,
|
212 |
+
resnet_eps=resnet_eps,
|
213 |
+
resnet_act_fn=resnet_act_fn,
|
214 |
+
attention_head_dim=attention_head_dim,
|
215 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
216 |
+
)
|
217 |
+
elif down_block_type == "DownEncoderBlock2D":
|
218 |
+
return DownEncoderBlock2D(
|
219 |
+
num_layers=num_layers,
|
220 |
+
in_channels=in_channels,
|
221 |
+
out_channels=out_channels,
|
222 |
+
add_downsample=add_downsample,
|
223 |
+
resnet_eps=resnet_eps,
|
224 |
+
resnet_act_fn=resnet_act_fn,
|
225 |
+
resnet_groups=resnet_groups,
|
226 |
+
downsample_padding=downsample_padding,
|
227 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
228 |
+
)
|
229 |
+
elif down_block_type == "AttnDownEncoderBlock2D":
|
230 |
+
return AttnDownEncoderBlock2D(
|
231 |
+
num_layers=num_layers,
|
232 |
+
in_channels=in_channels,
|
233 |
+
out_channels=out_channels,
|
234 |
+
add_downsample=add_downsample,
|
235 |
+
resnet_eps=resnet_eps,
|
236 |
+
resnet_act_fn=resnet_act_fn,
|
237 |
+
resnet_groups=resnet_groups,
|
238 |
+
downsample_padding=downsample_padding,
|
239 |
+
attention_head_dim=attention_head_dim,
|
240 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
241 |
+
)
|
242 |
+
elif down_block_type == "KDownBlock2D":
|
243 |
+
return KDownBlock2D(
|
244 |
+
num_layers=num_layers,
|
245 |
+
in_channels=in_channels,
|
246 |
+
out_channels=out_channels,
|
247 |
+
temb_channels=temb_channels,
|
248 |
+
add_downsample=add_downsample,
|
249 |
+
resnet_eps=resnet_eps,
|
250 |
+
resnet_act_fn=resnet_act_fn,
|
251 |
+
)
|
252 |
+
elif down_block_type == "KCrossAttnDownBlock2D":
|
253 |
+
return KCrossAttnDownBlock2D(
|
254 |
+
num_layers=num_layers,
|
255 |
+
in_channels=in_channels,
|
256 |
+
out_channels=out_channels,
|
257 |
+
temb_channels=temb_channels,
|
258 |
+
add_downsample=add_downsample,
|
259 |
+
resnet_eps=resnet_eps,
|
260 |
+
resnet_act_fn=resnet_act_fn,
|
261 |
+
cross_attention_dim=cross_attention_dim,
|
262 |
+
attention_head_dim=attention_head_dim,
|
263 |
+
add_self_attention=True if not add_downsample else False,
|
264 |
+
)
|
265 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
266 |
+
|
267 |
+
|
268 |
+
def get_up_block(
|
269 |
+
up_block_type,
|
270 |
+
num_layers,
|
271 |
+
in_channels,
|
272 |
+
out_channels,
|
273 |
+
prev_output_channel,
|
274 |
+
temb_channels,
|
275 |
+
add_upsample,
|
276 |
+
resnet_eps,
|
277 |
+
resnet_act_fn,
|
278 |
+
transformer_layers_per_block=1,
|
279 |
+
num_attention_heads=None,
|
280 |
+
resnet_groups=None,
|
281 |
+
cross_attention_dim=None,
|
282 |
+
dual_cross_attention=False,
|
283 |
+
use_linear_projection=False,
|
284 |
+
only_cross_attention=False,
|
285 |
+
upcast_attention=False,
|
286 |
+
resnet_time_scale_shift="default",
|
287 |
+
resnet_skip_time_act=False,
|
288 |
+
resnet_out_scale_factor=1.0,
|
289 |
+
cross_attention_norm=None,
|
290 |
+
attention_head_dim=None,
|
291 |
+
upsample_type=None,
|
292 |
+
num_views=1,
|
293 |
+
cd_attention_last: bool = False,
|
294 |
+
cd_attention_mid: bool = False,
|
295 |
+
multiview_attention: bool = True,
|
296 |
+
sparse_mv_attention: bool = False,
|
297 |
+
selfattn_block: str = "custom",
|
298 |
+
mvcd_attention: bool=False,
|
299 |
+
use_dino: bool = False
|
300 |
+
):
|
301 |
+
# If attn head dim is not defined, we default it to the number of heads
|
302 |
+
if attention_head_dim is None:
|
303 |
+
logger.warn(
|
304 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
305 |
+
)
|
306 |
+
attention_head_dim = num_attention_heads
|
307 |
+
|
308 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
309 |
+
if up_block_type == "UpBlock2D":
|
310 |
+
return UpBlock2D(
|
311 |
+
num_layers=num_layers,
|
312 |
+
in_channels=in_channels,
|
313 |
+
out_channels=out_channels,
|
314 |
+
prev_output_channel=prev_output_channel,
|
315 |
+
temb_channels=temb_channels,
|
316 |
+
add_upsample=add_upsample,
|
317 |
+
resnet_eps=resnet_eps,
|
318 |
+
resnet_act_fn=resnet_act_fn,
|
319 |
+
resnet_groups=resnet_groups,
|
320 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
321 |
+
)
|
322 |
+
elif up_block_type == "ResnetUpsampleBlock2D":
|
323 |
+
return ResnetUpsampleBlock2D(
|
324 |
+
num_layers=num_layers,
|
325 |
+
in_channels=in_channels,
|
326 |
+
out_channels=out_channels,
|
327 |
+
prev_output_channel=prev_output_channel,
|
328 |
+
temb_channels=temb_channels,
|
329 |
+
add_upsample=add_upsample,
|
330 |
+
resnet_eps=resnet_eps,
|
331 |
+
resnet_act_fn=resnet_act_fn,
|
332 |
+
resnet_groups=resnet_groups,
|
333 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
334 |
+
skip_time_act=resnet_skip_time_act,
|
335 |
+
output_scale_factor=resnet_out_scale_factor,
|
336 |
+
)
|
337 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
338 |
+
if cross_attention_dim is None:
|
339 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
340 |
+
return CrossAttnUpBlock2D(
|
341 |
+
num_layers=num_layers,
|
342 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
343 |
+
in_channels=in_channels,
|
344 |
+
out_channels=out_channels,
|
345 |
+
prev_output_channel=prev_output_channel,
|
346 |
+
temb_channels=temb_channels,
|
347 |
+
add_upsample=add_upsample,
|
348 |
+
resnet_eps=resnet_eps,
|
349 |
+
resnet_act_fn=resnet_act_fn,
|
350 |
+
resnet_groups=resnet_groups,
|
351 |
+
cross_attention_dim=cross_attention_dim,
|
352 |
+
num_attention_heads=num_attention_heads,
|
353 |
+
dual_cross_attention=dual_cross_attention,
|
354 |
+
use_linear_projection=use_linear_projection,
|
355 |
+
only_cross_attention=only_cross_attention,
|
356 |
+
upcast_attention=upcast_attention,
|
357 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
358 |
+
)
|
359 |
+
# custom MV2D attention block
|
360 |
+
elif up_block_type == "CrossAttnUpBlockMV2D":
|
361 |
+
if cross_attention_dim is None:
|
362 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlockMV2D")
|
363 |
+
return CrossAttnUpBlockMV2D(
|
364 |
+
num_layers=num_layers,
|
365 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
366 |
+
in_channels=in_channels,
|
367 |
+
out_channels=out_channels,
|
368 |
+
prev_output_channel=prev_output_channel,
|
369 |
+
temb_channels=temb_channels,
|
370 |
+
add_upsample=add_upsample,
|
371 |
+
resnet_eps=resnet_eps,
|
372 |
+
resnet_act_fn=resnet_act_fn,
|
373 |
+
resnet_groups=resnet_groups,
|
374 |
+
cross_attention_dim=cross_attention_dim,
|
375 |
+
num_attention_heads=num_attention_heads,
|
376 |
+
dual_cross_attention=dual_cross_attention,
|
377 |
+
use_linear_projection=use_linear_projection,
|
378 |
+
only_cross_attention=only_cross_attention,
|
379 |
+
upcast_attention=upcast_attention,
|
380 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
381 |
+
num_views=num_views,
|
382 |
+
cd_attention_last=cd_attention_last,
|
383 |
+
cd_attention_mid=cd_attention_mid,
|
384 |
+
multiview_attention=multiview_attention,
|
385 |
+
sparse_mv_attention=sparse_mv_attention,
|
386 |
+
selfattn_block=selfattn_block,
|
387 |
+
mvcd_attention=mvcd_attention,
|
388 |
+
use_dino=use_dino
|
389 |
+
)
|
390 |
+
elif up_block_type == "SimpleCrossAttnUpBlock2D":
|
391 |
+
if cross_attention_dim is None:
|
392 |
+
raise ValueError("cross_attention_dim must be specified for SimpleCrossAttnUpBlock2D")
|
393 |
+
return SimpleCrossAttnUpBlock2D(
|
394 |
+
num_layers=num_layers,
|
395 |
+
in_channels=in_channels,
|
396 |
+
out_channels=out_channels,
|
397 |
+
prev_output_channel=prev_output_channel,
|
398 |
+
temb_channels=temb_channels,
|
399 |
+
add_upsample=add_upsample,
|
400 |
+
resnet_eps=resnet_eps,
|
401 |
+
resnet_act_fn=resnet_act_fn,
|
402 |
+
resnet_groups=resnet_groups,
|
403 |
+
cross_attention_dim=cross_attention_dim,
|
404 |
+
attention_head_dim=attention_head_dim,
|
405 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
406 |
+
skip_time_act=resnet_skip_time_act,
|
407 |
+
output_scale_factor=resnet_out_scale_factor,
|
408 |
+
only_cross_attention=only_cross_attention,
|
409 |
+
cross_attention_norm=cross_attention_norm,
|
410 |
+
)
|
411 |
+
elif up_block_type == "AttnUpBlock2D":
|
412 |
+
if add_upsample is False:
|
413 |
+
upsample_type = None
|
414 |
+
else:
|
415 |
+
upsample_type = upsample_type or "conv" # default to 'conv'
|
416 |
+
|
417 |
+
return AttnUpBlock2D(
|
418 |
+
num_layers=num_layers,
|
419 |
+
in_channels=in_channels,
|
420 |
+
out_channels=out_channels,
|
421 |
+
prev_output_channel=prev_output_channel,
|
422 |
+
temb_channels=temb_channels,
|
423 |
+
resnet_eps=resnet_eps,
|
424 |
+
resnet_act_fn=resnet_act_fn,
|
425 |
+
resnet_groups=resnet_groups,
|
426 |
+
attention_head_dim=attention_head_dim,
|
427 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
428 |
+
upsample_type=upsample_type,
|
429 |
+
)
|
430 |
+
elif up_block_type == "SkipUpBlock2D":
|
431 |
+
return SkipUpBlock2D(
|
432 |
+
num_layers=num_layers,
|
433 |
+
in_channels=in_channels,
|
434 |
+
out_channels=out_channels,
|
435 |
+
prev_output_channel=prev_output_channel,
|
436 |
+
temb_channels=temb_channels,
|
437 |
+
add_upsample=add_upsample,
|
438 |
+
resnet_eps=resnet_eps,
|
439 |
+
resnet_act_fn=resnet_act_fn,
|
440 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
441 |
+
)
|
442 |
+
elif up_block_type == "AttnSkipUpBlock2D":
|
443 |
+
return AttnSkipUpBlock2D(
|
444 |
+
num_layers=num_layers,
|
445 |
+
in_channels=in_channels,
|
446 |
+
out_channels=out_channels,
|
447 |
+
prev_output_channel=prev_output_channel,
|
448 |
+
temb_channels=temb_channels,
|
449 |
+
add_upsample=add_upsample,
|
450 |
+
resnet_eps=resnet_eps,
|
451 |
+
resnet_act_fn=resnet_act_fn,
|
452 |
+
attention_head_dim=attention_head_dim,
|
453 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
454 |
+
)
|
455 |
+
elif up_block_type == "UpDecoderBlock2D":
|
456 |
+
return UpDecoderBlock2D(
|
457 |
+
num_layers=num_layers,
|
458 |
+
in_channels=in_channels,
|
459 |
+
out_channels=out_channels,
|
460 |
+
add_upsample=add_upsample,
|
461 |
+
resnet_eps=resnet_eps,
|
462 |
+
resnet_act_fn=resnet_act_fn,
|
463 |
+
resnet_groups=resnet_groups,
|
464 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
465 |
+
temb_channels=temb_channels,
|
466 |
+
)
|
467 |
+
elif up_block_type == "AttnUpDecoderBlock2D":
|
468 |
+
return AttnUpDecoderBlock2D(
|
469 |
+
num_layers=num_layers,
|
470 |
+
in_channels=in_channels,
|
471 |
+
out_channels=out_channels,
|
472 |
+
add_upsample=add_upsample,
|
473 |
+
resnet_eps=resnet_eps,
|
474 |
+
resnet_act_fn=resnet_act_fn,
|
475 |
+
resnet_groups=resnet_groups,
|
476 |
+
attention_head_dim=attention_head_dim,
|
477 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
478 |
+
temb_channels=temb_channels,
|
479 |
+
)
|
480 |
+
elif up_block_type == "KUpBlock2D":
|
481 |
+
return KUpBlock2D(
|
482 |
+
num_layers=num_layers,
|
483 |
+
in_channels=in_channels,
|
484 |
+
out_channels=out_channels,
|
485 |
+
temb_channels=temb_channels,
|
486 |
+
add_upsample=add_upsample,
|
487 |
+
resnet_eps=resnet_eps,
|
488 |
+
resnet_act_fn=resnet_act_fn,
|
489 |
+
)
|
490 |
+
elif up_block_type == "KCrossAttnUpBlock2D":
|
491 |
+
return KCrossAttnUpBlock2D(
|
492 |
+
num_layers=num_layers,
|
493 |
+
in_channels=in_channels,
|
494 |
+
out_channels=out_channels,
|
495 |
+
temb_channels=temb_channels,
|
496 |
+
add_upsample=add_upsample,
|
497 |
+
resnet_eps=resnet_eps,
|
498 |
+
resnet_act_fn=resnet_act_fn,
|
499 |
+
cross_attention_dim=cross_attention_dim,
|
500 |
+
attention_head_dim=attention_head_dim,
|
501 |
+
)
|
502 |
+
|
503 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
504 |
+
|
505 |
+
|
506 |
+
class UNetMidBlockMV2DCrossAttn(nn.Module):
|
507 |
+
def __init__(
|
508 |
+
self,
|
509 |
+
in_channels: int,
|
510 |
+
temb_channels: int,
|
511 |
+
dropout: float = 0.0,
|
512 |
+
num_layers: int = 1,
|
513 |
+
transformer_layers_per_block: int = 1,
|
514 |
+
resnet_eps: float = 1e-6,
|
515 |
+
resnet_time_scale_shift: str = "default",
|
516 |
+
resnet_act_fn: str = "swish",
|
517 |
+
resnet_groups: int = 32,
|
518 |
+
resnet_pre_norm: bool = True,
|
519 |
+
num_attention_heads=1,
|
520 |
+
output_scale_factor=1.0,
|
521 |
+
cross_attention_dim=1280,
|
522 |
+
dual_cross_attention=False,
|
523 |
+
use_linear_projection=False,
|
524 |
+
upcast_attention=False,
|
525 |
+
num_views: int = 1,
|
526 |
+
cd_attention_last: bool = False,
|
527 |
+
cd_attention_mid: bool = False,
|
528 |
+
multiview_attention: bool = True,
|
529 |
+
sparse_mv_attention: bool = False,
|
530 |
+
selfattn_block: str = "custom",
|
531 |
+
mvcd_attention: bool=False,
|
532 |
+
use_dino: bool = False
|
533 |
+
):
|
534 |
+
super().__init__()
|
535 |
+
|
536 |
+
self.has_cross_attention = True
|
537 |
+
self.num_attention_heads = num_attention_heads
|
538 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
539 |
+
if selfattn_block == "custom":
|
540 |
+
from .transformer_mv2d import TransformerMV2DModel
|
541 |
+
elif selfattn_block == "rowwise":
|
542 |
+
from .transformer_mv2d_rowwise import TransformerMV2DModel
|
543 |
+
elif selfattn_block == "self_rowwise":
|
544 |
+
from .transformer_mv2d_self_rowwise import TransformerMV2DModel
|
545 |
+
else:
|
546 |
+
raise NotImplementedError
|
547 |
+
|
548 |
+
# there is always at least one resnet
|
549 |
+
resnets = [
|
550 |
+
ResnetBlock2D(
|
551 |
+
in_channels=in_channels,
|
552 |
+
out_channels=in_channels,
|
553 |
+
temb_channels=temb_channels,
|
554 |
+
eps=resnet_eps,
|
555 |
+
groups=resnet_groups,
|
556 |
+
dropout=dropout,
|
557 |
+
time_embedding_norm=resnet_time_scale_shift,
|
558 |
+
non_linearity=resnet_act_fn,
|
559 |
+
output_scale_factor=output_scale_factor,
|
560 |
+
pre_norm=resnet_pre_norm,
|
561 |
+
)
|
562 |
+
]
|
563 |
+
attentions = []
|
564 |
+
|
565 |
+
for _ in range(num_layers):
|
566 |
+
if not dual_cross_attention:
|
567 |
+
attentions.append(
|
568 |
+
TransformerMV2DModel(
|
569 |
+
num_attention_heads,
|
570 |
+
in_channels // num_attention_heads,
|
571 |
+
in_channels=in_channels,
|
572 |
+
num_layers=transformer_layers_per_block,
|
573 |
+
cross_attention_dim=cross_attention_dim,
|
574 |
+
norm_num_groups=resnet_groups,
|
575 |
+
use_linear_projection=use_linear_projection,
|
576 |
+
upcast_attention=upcast_attention,
|
577 |
+
num_views=num_views,
|
578 |
+
cd_attention_last=cd_attention_last,
|
579 |
+
cd_attention_mid=cd_attention_mid,
|
580 |
+
multiview_attention=multiview_attention,
|
581 |
+
sparse_mv_attention=sparse_mv_attention,
|
582 |
+
mvcd_attention=mvcd_attention,
|
583 |
+
use_dino=use_dino
|
584 |
+
)
|
585 |
+
)
|
586 |
+
else:
|
587 |
+
raise NotImplementedError
|
588 |
+
resnets.append(
|
589 |
+
ResnetBlock2D(
|
590 |
+
in_channels=in_channels,
|
591 |
+
out_channels=in_channels,
|
592 |
+
temb_channels=temb_channels,
|
593 |
+
eps=resnet_eps,
|
594 |
+
groups=resnet_groups,
|
595 |
+
dropout=dropout,
|
596 |
+
time_embedding_norm=resnet_time_scale_shift,
|
597 |
+
non_linearity=resnet_act_fn,
|
598 |
+
output_scale_factor=output_scale_factor,
|
599 |
+
pre_norm=resnet_pre_norm,
|
600 |
+
)
|
601 |
+
)
|
602 |
+
|
603 |
+
self.attentions = nn.ModuleList(attentions)
|
604 |
+
self.resnets = nn.ModuleList(resnets)
|
605 |
+
|
606 |
+
def forward(
|
607 |
+
self,
|
608 |
+
hidden_states: torch.FloatTensor,
|
609 |
+
temb: Optional[torch.FloatTensor] = None,
|
610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
611 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
612 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
613 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
614 |
+
dino_feature: Optional[torch.FloatTensor] = None
|
615 |
+
) -> torch.FloatTensor:
|
616 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
617 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
618 |
+
hidden_states = attn(
|
619 |
+
hidden_states,
|
620 |
+
encoder_hidden_states=encoder_hidden_states,
|
621 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
622 |
+
attention_mask=attention_mask,
|
623 |
+
encoder_attention_mask=encoder_attention_mask,
|
624 |
+
dino_feature=dino_feature,
|
625 |
+
return_dict=False,
|
626 |
+
)[0]
|
627 |
+
hidden_states = resnet(hidden_states, temb)
|
628 |
+
|
629 |
+
return hidden_states
|
630 |
+
|
631 |
+
|
632 |
+
class CrossAttnUpBlockMV2D(nn.Module):
|
633 |
+
def __init__(
|
634 |
+
self,
|
635 |
+
in_channels: int,
|
636 |
+
out_channels: int,
|
637 |
+
prev_output_channel: int,
|
638 |
+
temb_channels: int,
|
639 |
+
dropout: float = 0.0,
|
640 |
+
num_layers: int = 1,
|
641 |
+
transformer_layers_per_block: int = 1,
|
642 |
+
resnet_eps: float = 1e-6,
|
643 |
+
resnet_time_scale_shift: str = "default",
|
644 |
+
resnet_act_fn: str = "swish",
|
645 |
+
resnet_groups: int = 32,
|
646 |
+
resnet_pre_norm: bool = True,
|
647 |
+
num_attention_heads=1,
|
648 |
+
cross_attention_dim=1280,
|
649 |
+
output_scale_factor=1.0,
|
650 |
+
add_upsample=True,
|
651 |
+
dual_cross_attention=False,
|
652 |
+
use_linear_projection=False,
|
653 |
+
only_cross_attention=False,
|
654 |
+
upcast_attention=False,
|
655 |
+
num_views: int = 1,
|
656 |
+
cd_attention_last: bool = False,
|
657 |
+
cd_attention_mid: bool = False,
|
658 |
+
multiview_attention: bool = True,
|
659 |
+
sparse_mv_attention: bool = False,
|
660 |
+
selfattn_block: str = "custom",
|
661 |
+
mvcd_attention: bool=False,
|
662 |
+
use_dino: bool = False
|
663 |
+
):
|
664 |
+
super().__init__()
|
665 |
+
resnets = []
|
666 |
+
attentions = []
|
667 |
+
|
668 |
+
self.has_cross_attention = True
|
669 |
+
self.num_attention_heads = num_attention_heads
|
670 |
+
|
671 |
+
if selfattn_block == "custom":
|
672 |
+
from .transformer_mv2d import TransformerMV2DModel
|
673 |
+
elif selfattn_block == "rowwise":
|
674 |
+
from .transformer_mv2d_rowwise import TransformerMV2DModel
|
675 |
+
elif selfattn_block == "self_rowwise":
|
676 |
+
from .transformer_mv2d_self_rowwise import TransformerMV2DModel
|
677 |
+
else:
|
678 |
+
raise NotImplementedError
|
679 |
+
|
680 |
+
for i in range(num_layers):
|
681 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
682 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
683 |
+
|
684 |
+
resnets.append(
|
685 |
+
ResnetBlock2D(
|
686 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
687 |
+
out_channels=out_channels,
|
688 |
+
temb_channels=temb_channels,
|
689 |
+
eps=resnet_eps,
|
690 |
+
groups=resnet_groups,
|
691 |
+
dropout=dropout,
|
692 |
+
time_embedding_norm=resnet_time_scale_shift,
|
693 |
+
non_linearity=resnet_act_fn,
|
694 |
+
output_scale_factor=output_scale_factor,
|
695 |
+
pre_norm=resnet_pre_norm,
|
696 |
+
)
|
697 |
+
)
|
698 |
+
if not dual_cross_attention:
|
699 |
+
attentions.append(
|
700 |
+
TransformerMV2DModel(
|
701 |
+
num_attention_heads,
|
702 |
+
out_channels // num_attention_heads,
|
703 |
+
in_channels=out_channels,
|
704 |
+
num_layers=transformer_layers_per_block,
|
705 |
+
cross_attention_dim=cross_attention_dim,
|
706 |
+
norm_num_groups=resnet_groups,
|
707 |
+
use_linear_projection=use_linear_projection,
|
708 |
+
only_cross_attention=only_cross_attention,
|
709 |
+
upcast_attention=upcast_attention,
|
710 |
+
num_views=num_views,
|
711 |
+
cd_attention_last=cd_attention_last,
|
712 |
+
cd_attention_mid=cd_attention_mid,
|
713 |
+
multiview_attention=multiview_attention,
|
714 |
+
sparse_mv_attention=sparse_mv_attention,
|
715 |
+
mvcd_attention=mvcd_attention,
|
716 |
+
use_dino=use_dino
|
717 |
+
)
|
718 |
+
)
|
719 |
+
else:
|
720 |
+
raise NotImplementedError
|
721 |
+
self.attentions = nn.ModuleList(attentions)
|
722 |
+
self.resnets = nn.ModuleList(resnets)
|
723 |
+
|
724 |
+
if add_upsample:
|
725 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
726 |
+
else:
|
727 |
+
self.upsamplers = None
|
728 |
+
|
729 |
+
self.gradient_checkpointing = False
|
730 |
+
|
731 |
+
def forward(
|
732 |
+
self,
|
733 |
+
hidden_states: torch.FloatTensor,
|
734 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
735 |
+
temb: Optional[torch.FloatTensor] = None,
|
736 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
737 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
738 |
+
upsample_size: Optional[int] = None,
|
739 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
740 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
741 |
+
dino_feature: Optional[torch.FloatTensor] = None
|
742 |
+
):
|
743 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
744 |
+
# pop res hidden states
|
745 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
746 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
747 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
748 |
+
|
749 |
+
if self.training and self.gradient_checkpointing:
|
750 |
+
|
751 |
+
def create_custom_forward(module, return_dict=None):
|
752 |
+
def custom_forward(*inputs):
|
753 |
+
if return_dict is not None:
|
754 |
+
return module(*inputs, return_dict=return_dict)
|
755 |
+
else:
|
756 |
+
return module(*inputs)
|
757 |
+
|
758 |
+
return custom_forward
|
759 |
+
|
760 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
761 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
762 |
+
create_custom_forward(resnet),
|
763 |
+
hidden_states,
|
764 |
+
temb,
|
765 |
+
**ckpt_kwargs,
|
766 |
+
)
|
767 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
768 |
+
create_custom_forward(attn, return_dict=False),
|
769 |
+
hidden_states,
|
770 |
+
encoder_hidden_states,
|
771 |
+
dino_feature,
|
772 |
+
None, # timestep
|
773 |
+
None, # class_labels
|
774 |
+
cross_attention_kwargs,
|
775 |
+
attention_mask,
|
776 |
+
encoder_attention_mask,
|
777 |
+
**ckpt_kwargs,
|
778 |
+
)[0]
|
779 |
+
else:
|
780 |
+
hidden_states = resnet(hidden_states, temb)
|
781 |
+
hidden_states = attn(
|
782 |
+
hidden_states,
|
783 |
+
encoder_hidden_states=encoder_hidden_states,
|
784 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
785 |
+
attention_mask=attention_mask,
|
786 |
+
encoder_attention_mask=encoder_attention_mask,
|
787 |
+
dino_feature=dino_feature,
|
788 |
+
return_dict=False,
|
789 |
+
)[0]
|
790 |
+
|
791 |
+
if self.upsamplers is not None:
|
792 |
+
for upsampler in self.upsamplers:
|
793 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
794 |
+
|
795 |
+
return hidden_states
|
796 |
+
|
797 |
+
|
798 |
+
class CrossAttnDownBlockMV2D(nn.Module):
|
799 |
+
def __init__(
|
800 |
+
self,
|
801 |
+
in_channels: int,
|
802 |
+
out_channels: int,
|
803 |
+
temb_channels: int,
|
804 |
+
dropout: float = 0.0,
|
805 |
+
num_layers: int = 1,
|
806 |
+
transformer_layers_per_block: int = 1,
|
807 |
+
resnet_eps: float = 1e-6,
|
808 |
+
resnet_time_scale_shift: str = "default",
|
809 |
+
resnet_act_fn: str = "swish",
|
810 |
+
resnet_groups: int = 32,
|
811 |
+
resnet_pre_norm: bool = True,
|
812 |
+
num_attention_heads=1,
|
813 |
+
cross_attention_dim=1280,
|
814 |
+
output_scale_factor=1.0,
|
815 |
+
downsample_padding=1,
|
816 |
+
add_downsample=True,
|
817 |
+
dual_cross_attention=False,
|
818 |
+
use_linear_projection=False,
|
819 |
+
only_cross_attention=False,
|
820 |
+
upcast_attention=False,
|
821 |
+
num_views: int = 1,
|
822 |
+
cd_attention_last: bool = False,
|
823 |
+
cd_attention_mid: bool = False,
|
824 |
+
multiview_attention: bool = True,
|
825 |
+
sparse_mv_attention: bool = False,
|
826 |
+
selfattn_block: str = "custom",
|
827 |
+
mvcd_attention: bool=False,
|
828 |
+
use_dino: bool = False
|
829 |
+
):
|
830 |
+
super().__init__()
|
831 |
+
resnets = []
|
832 |
+
attentions = []
|
833 |
+
|
834 |
+
self.has_cross_attention = True
|
835 |
+
self.num_attention_heads = num_attention_heads
|
836 |
+
if selfattn_block == "custom":
|
837 |
+
from .transformer_mv2d import TransformerMV2DModel
|
838 |
+
elif selfattn_block == "rowwise":
|
839 |
+
from .transformer_mv2d_rowwise import TransformerMV2DModel
|
840 |
+
elif selfattn_block == "self_rowwise":
|
841 |
+
from .transformer_mv2d_self_rowwise import TransformerMV2DModel
|
842 |
+
else:
|
843 |
+
raise NotImplementedError
|
844 |
+
|
845 |
+
for i in range(num_layers):
|
846 |
+
in_channels = in_channels if i == 0 else out_channels
|
847 |
+
resnets.append(
|
848 |
+
ResnetBlock2D(
|
849 |
+
in_channels=in_channels,
|
850 |
+
out_channels=out_channels,
|
851 |
+
temb_channels=temb_channels,
|
852 |
+
eps=resnet_eps,
|
853 |
+
groups=resnet_groups,
|
854 |
+
dropout=dropout,
|
855 |
+
time_embedding_norm=resnet_time_scale_shift,
|
856 |
+
non_linearity=resnet_act_fn,
|
857 |
+
output_scale_factor=output_scale_factor,
|
858 |
+
pre_norm=resnet_pre_norm,
|
859 |
+
)
|
860 |
+
)
|
861 |
+
if not dual_cross_attention:
|
862 |
+
attentions.append(
|
863 |
+
TransformerMV2DModel(
|
864 |
+
num_attention_heads,
|
865 |
+
out_channels // num_attention_heads,
|
866 |
+
in_channels=out_channels,
|
867 |
+
num_layers=transformer_layers_per_block,
|
868 |
+
cross_attention_dim=cross_attention_dim,
|
869 |
+
norm_num_groups=resnet_groups,
|
870 |
+
use_linear_projection=use_linear_projection,
|
871 |
+
only_cross_attention=only_cross_attention,
|
872 |
+
upcast_attention=upcast_attention,
|
873 |
+
num_views=num_views,
|
874 |
+
cd_attention_last=cd_attention_last,
|
875 |
+
cd_attention_mid=cd_attention_mid,
|
876 |
+
multiview_attention=multiview_attention,
|
877 |
+
sparse_mv_attention=sparse_mv_attention,
|
878 |
+
mvcd_attention=mvcd_attention,
|
879 |
+
use_dino=use_dino
|
880 |
+
)
|
881 |
+
)
|
882 |
+
else:
|
883 |
+
raise NotImplementedError
|
884 |
+
self.attentions = nn.ModuleList(attentions)
|
885 |
+
self.resnets = nn.ModuleList(resnets)
|
886 |
+
|
887 |
+
if add_downsample:
|
888 |
+
self.downsamplers = nn.ModuleList(
|
889 |
+
[
|
890 |
+
Downsample2D(
|
891 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
892 |
+
)
|
893 |
+
]
|
894 |
+
)
|
895 |
+
else:
|
896 |
+
self.downsamplers = None
|
897 |
+
|
898 |
+
self.gradient_checkpointing = False
|
899 |
+
|
900 |
+
def forward(
|
901 |
+
self,
|
902 |
+
hidden_states: torch.FloatTensor,
|
903 |
+
temb: Optional[torch.FloatTensor] = None,
|
904 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
905 |
+
dino_feature: Optional[torch.FloatTensor] = None,
|
906 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
907 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
908 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
909 |
+
additional_residuals=None,
|
910 |
+
):
|
911 |
+
output_states = ()
|
912 |
+
|
913 |
+
blocks = list(zip(self.resnets, self.attentions))
|
914 |
+
|
915 |
+
for i, (resnet, attn) in enumerate(blocks):
|
916 |
+
if self.training and self.gradient_checkpointing:
|
917 |
+
|
918 |
+
def create_custom_forward(module, return_dict=None):
|
919 |
+
def custom_forward(*inputs):
|
920 |
+
if return_dict is not None:
|
921 |
+
return module(*inputs, return_dict=return_dict)
|
922 |
+
else:
|
923 |
+
return module(*inputs)
|
924 |
+
|
925 |
+
return custom_forward
|
926 |
+
|
927 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
928 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
929 |
+
create_custom_forward(resnet),
|
930 |
+
hidden_states,
|
931 |
+
temb,
|
932 |
+
**ckpt_kwargs,
|
933 |
+
)
|
934 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
935 |
+
create_custom_forward(attn, return_dict=False),
|
936 |
+
hidden_states,
|
937 |
+
encoder_hidden_states,
|
938 |
+
dino_feature,
|
939 |
+
None, # timestep
|
940 |
+
None, # class_labels
|
941 |
+
cross_attention_kwargs,
|
942 |
+
attention_mask,
|
943 |
+
encoder_attention_mask,
|
944 |
+
**ckpt_kwargs,
|
945 |
+
)[0]
|
946 |
+
else:
|
947 |
+
hidden_states = resnet(hidden_states, temb)
|
948 |
+
hidden_states = attn(
|
949 |
+
hidden_states,
|
950 |
+
encoder_hidden_states=encoder_hidden_states,
|
951 |
+
dino_feature=dino_feature,
|
952 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
953 |
+
attention_mask=attention_mask,
|
954 |
+
encoder_attention_mask=encoder_attention_mask,
|
955 |
+
return_dict=False,
|
956 |
+
)[0]
|
957 |
+
|
958 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
959 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
960 |
+
hidden_states = hidden_states + additional_residuals
|
961 |
+
|
962 |
+
output_states = output_states + (hidden_states,)
|
963 |
+
|
964 |
+
if self.downsamplers is not None:
|
965 |
+
for downsampler in self.downsamplers:
|
966 |
+
hidden_states = downsampler(hidden_states)
|
967 |
+
|
968 |
+
output_states = output_states + (hidden_states,)
|
969 |
+
|
970 |
+
return hidden_states, output_states
|
971 |
+
|
mvdiffusion/models/unet_mv2d_condition.py
ADDED
@@ -0,0 +1,1686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
|
22 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
24 |
+
from diffusers.utils import BaseOutput, logging
|
25 |
+
from diffusers.models.activations import get_activation
|
26 |
+
from diffusers.models.attention_processor import AttentionProcessor, AttnProcessor
|
27 |
+
from diffusers.models.embeddings import (
|
28 |
+
GaussianFourierProjection,
|
29 |
+
ImageHintTimeEmbedding,
|
30 |
+
ImageProjection,
|
31 |
+
ImageTimeEmbedding,
|
32 |
+
TextImageProjection,
|
33 |
+
TextImageTimeEmbedding,
|
34 |
+
TextTimeEmbedding,
|
35 |
+
TimestepEmbedding,
|
36 |
+
Timesteps,
|
37 |
+
)
|
38 |
+
from diffusers.models.modeling_utils import ModelMixin, load_state_dict, _load_state_dict_into_model
|
39 |
+
from diffusers.models.unet_2d_blocks import (
|
40 |
+
CrossAttnDownBlock2D,
|
41 |
+
CrossAttnUpBlock2D,
|
42 |
+
DownBlock2D,
|
43 |
+
UNetMidBlock2DCrossAttn,
|
44 |
+
UNetMidBlock2DSimpleCrossAttn,
|
45 |
+
UpBlock2D,
|
46 |
+
)
|
47 |
+
from diffusers.utils import (
|
48 |
+
CONFIG_NAME,
|
49 |
+
FLAX_WEIGHTS_NAME,
|
50 |
+
SAFETENSORS_WEIGHTS_NAME,
|
51 |
+
WEIGHTS_NAME,
|
52 |
+
_add_variant,
|
53 |
+
_get_model_file,
|
54 |
+
deprecate,
|
55 |
+
is_torch_version,
|
56 |
+
logging,
|
57 |
+
)
|
58 |
+
from diffusers.utils.import_utils import is_accelerate_available
|
59 |
+
from diffusers.utils.hub_utils import HF_HUB_OFFLINE
|
60 |
+
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
61 |
+
DIFFUSERS_CACHE = HUGGINGFACE_HUB_CACHE
|
62 |
+
|
63 |
+
from diffusers import __version__
|
64 |
+
from .unet_mv2d_blocks import (
|
65 |
+
CrossAttnDownBlockMV2D,
|
66 |
+
CrossAttnUpBlockMV2D,
|
67 |
+
UNetMidBlockMV2DCrossAttn,
|
68 |
+
get_down_block,
|
69 |
+
get_up_block,
|
70 |
+
)
|
71 |
+
from einops import rearrange, repeat
|
72 |
+
|
73 |
+
from diffusers import __version__
|
74 |
+
from mvdiffusion.models.unet_mv2d_blocks import (
|
75 |
+
CrossAttnDownBlockMV2D,
|
76 |
+
CrossAttnUpBlockMV2D,
|
77 |
+
UNetMidBlockMV2DCrossAttn,
|
78 |
+
get_down_block,
|
79 |
+
get_up_block,
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
84 |
+
|
85 |
+
|
86 |
+
@dataclass
|
87 |
+
class UNetMV2DConditionOutput(BaseOutput):
|
88 |
+
"""
|
89 |
+
The output of [`UNet2DConditionModel`].
|
90 |
+
|
91 |
+
Args:
|
92 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
93 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
94 |
+
"""
|
95 |
+
|
96 |
+
sample: torch.FloatTensor = None
|
97 |
+
|
98 |
+
|
99 |
+
class ResidualBlock(nn.Module):
|
100 |
+
def __init__(self, dim):
|
101 |
+
super(ResidualBlock, self).__init__()
|
102 |
+
self.linear1 = nn.Linear(dim, dim)
|
103 |
+
self.activation = nn.SiLU()
|
104 |
+
self.linear2 = nn.Linear(dim, dim)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
identity = x
|
108 |
+
out = self.linear1(x)
|
109 |
+
out = self.activation(out)
|
110 |
+
out = self.linear2(out)
|
111 |
+
out += identity
|
112 |
+
out = self.activation(out)
|
113 |
+
return out
|
114 |
+
|
115 |
+
class ResidualLiner(nn.Module):
|
116 |
+
def __init__(self, in_features, out_features, dim, act=None, num_block=1):
|
117 |
+
super(ResidualLiner, self).__init__()
|
118 |
+
self.linear_in = nn.Sequential(nn.Linear(in_features, dim), nn.SiLU())
|
119 |
+
|
120 |
+
blocks = nn.ModuleList()
|
121 |
+
for _ in range(num_block):
|
122 |
+
blocks.append(ResidualBlock(dim))
|
123 |
+
self.blocks = blocks
|
124 |
+
|
125 |
+
self.linear_out = nn.Linear(dim, out_features)
|
126 |
+
self.act = act
|
127 |
+
|
128 |
+
def forward(self, x):
|
129 |
+
out = self.linear_in(x)
|
130 |
+
for block in self.blocks:
|
131 |
+
out = block(out)
|
132 |
+
out = self.linear_out(out)
|
133 |
+
if self.act is not None:
|
134 |
+
out = self.act(out)
|
135 |
+
return out
|
136 |
+
|
137 |
+
class BasicConvBlock(nn.Module):
|
138 |
+
def __init__(self, in_channels, out_channels, stride=1):
|
139 |
+
super(BasicConvBlock, self).__init__()
|
140 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
|
141 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
142 |
+
self.act = nn.SiLU()
|
143 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
|
144 |
+
self.norm2 = nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
145 |
+
self.downsample = nn.Sequential()
|
146 |
+
if stride != 1 or in_channels != out_channels:
|
147 |
+
self.downsample = nn.Sequential(
|
148 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
|
149 |
+
nn.GroupNorm(num_groups=8, num_channels=in_channels, affine=True)
|
150 |
+
)
|
151 |
+
|
152 |
+
def forward(self, x):
|
153 |
+
identity = x
|
154 |
+
out = self.conv1(x)
|
155 |
+
out = self.norm1(out)
|
156 |
+
out = self.act(out)
|
157 |
+
out = self.conv2(out)
|
158 |
+
out = self.norm2(out)
|
159 |
+
out += self.downsample(identity)
|
160 |
+
out = self.act(out)
|
161 |
+
return out
|
162 |
+
|
163 |
+
class UNetMV2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
164 |
+
r"""
|
165 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
166 |
+
shaped output.
|
167 |
+
|
168 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
169 |
+
for all models (such as downloading or saving).
|
170 |
+
|
171 |
+
Parameters:
|
172 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
173 |
+
Height and width of input/output sample.
|
174 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
175 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
176 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
177 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
178 |
+
Whether to flip the sin to cos in the time embedding.
|
179 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
180 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
181 |
+
The tuple of downsample blocks to use.
|
182 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
183 |
+
Block type for middle of UNet, it can be either `UNetMidBlock2DCrossAttn` or
|
184 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
185 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
186 |
+
The tuple of upsample blocks to use.
|
187 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
188 |
+
Whether to include self-attention in the basic transformer blocks, see
|
189 |
+
[`~models.attention.BasicTransformerBlock`].
|
190 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
191 |
+
The tuple of output channels for each block.
|
192 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
193 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
194 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
195 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
196 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
197 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
198 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
199 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
200 |
+
The dimension of the cross attention features.
|
201 |
+
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
|
202 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
203 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
204 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
205 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
206 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
207 |
+
dimension to `cross_attention_dim`.
|
208 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
209 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
210 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
211 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
212 |
+
num_attention_heads (`int`, *optional*):
|
213 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
214 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
215 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
216 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
217 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
218 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
219 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
220 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
221 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
222 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
223 |
+
Dimension for the timestep embeddings.
|
224 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
225 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
226 |
+
class conditioning with `class_embed_type` equal to `None`.
|
227 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
228 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
229 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
230 |
+
An optional override for the dimension of the projected time embedding.
|
231 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
232 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
233 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
234 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
235 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
236 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
237 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
238 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
239 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
240 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
241 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
242 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
243 |
+
embeddings with the class embeddings.
|
244 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
245 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
246 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
247 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
248 |
+
otherwise.
|
249 |
+
"""
|
250 |
+
|
251 |
+
_supports_gradient_checkpointing = True
|
252 |
+
|
253 |
+
@register_to_config
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
sample_size: Optional[int] = None,
|
257 |
+
in_channels: int = 4,
|
258 |
+
out_channels: int = 4,
|
259 |
+
center_input_sample: bool = False,
|
260 |
+
flip_sin_to_cos: bool = True,
|
261 |
+
freq_shift: int = 0,
|
262 |
+
down_block_types: Tuple[str] = (
|
263 |
+
"CrossAttnDownBlockMV2D",
|
264 |
+
"CrossAttnDownBlockMV2D",
|
265 |
+
"CrossAttnDownBlockMV2D",
|
266 |
+
"DownBlock2D",
|
267 |
+
),
|
268 |
+
mid_block_type: Optional[str] = "UNetMidBlockMV2DCrossAttn",
|
269 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D", "CrossAttnUpBlockMV2D"),
|
270 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
271 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
272 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
273 |
+
downsample_padding: int = 1,
|
274 |
+
mid_block_scale_factor: float = 1,
|
275 |
+
act_fn: str = "silu",
|
276 |
+
norm_num_groups: Optional[int] = 32,
|
277 |
+
norm_eps: float = 1e-5,
|
278 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
279 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
280 |
+
encoder_hid_dim: Optional[int] = None,
|
281 |
+
encoder_hid_dim_type: Optional[str] = None,
|
282 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
283 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
284 |
+
dual_cross_attention: bool = False,
|
285 |
+
use_linear_projection: bool = False,
|
286 |
+
class_embed_type: Optional[str] = None,
|
287 |
+
addition_embed_type: Optional[str] = None,
|
288 |
+
addition_time_embed_dim: Optional[int] = None,
|
289 |
+
num_class_embeds: Optional[int] = None,
|
290 |
+
upcast_attention: bool = False,
|
291 |
+
resnet_time_scale_shift: str = "default",
|
292 |
+
resnet_skip_time_act: bool = False,
|
293 |
+
resnet_out_scale_factor: int = 1.0,
|
294 |
+
time_embedding_type: str = "positional",
|
295 |
+
time_embedding_dim: Optional[int] = None,
|
296 |
+
time_embedding_act_fn: Optional[str] = None,
|
297 |
+
timestep_post_act: Optional[str] = None,
|
298 |
+
time_cond_proj_dim: Optional[int] = None,
|
299 |
+
conv_in_kernel: int = 3,
|
300 |
+
conv_out_kernel: int = 3,
|
301 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
302 |
+
projection_camera_embeddings_input_dim: Optional[int] = None,
|
303 |
+
class_embeddings_concat: bool = False,
|
304 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
305 |
+
cross_attention_norm: Optional[str] = None,
|
306 |
+
addition_embed_type_num_heads=64,
|
307 |
+
num_views: int = 1,
|
308 |
+
cd_attention_last: bool = False,
|
309 |
+
cd_attention_mid: bool = False,
|
310 |
+
multiview_attention: bool = True,
|
311 |
+
sparse_mv_attention: bool = False,
|
312 |
+
selfattn_block: str = "custom",
|
313 |
+
mvcd_attention: bool = False,
|
314 |
+
regress_elevation: bool = False,
|
315 |
+
regress_focal_length: bool = False,
|
316 |
+
num_regress_blocks: int = 4,
|
317 |
+
use_dino: bool = False,
|
318 |
+
addition_downsample: bool = False,
|
319 |
+
addition_channels: Optional[Tuple[int]] = (1280, 1280, 1280),
|
320 |
+
):
|
321 |
+
super().__init__()
|
322 |
+
|
323 |
+
self.sample_size = sample_size
|
324 |
+
self.num_views = num_views
|
325 |
+
self.mvcd_attention = mvcd_attention
|
326 |
+
if num_attention_heads is not None:
|
327 |
+
raise ValueError(
|
328 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
329 |
+
)
|
330 |
+
|
331 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
332 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
333 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
334 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
335 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
336 |
+
# which is why we correct for the naming here.
|
337 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
338 |
+
|
339 |
+
# Check inputs
|
340 |
+
if len(down_block_types) != len(up_block_types):
|
341 |
+
raise ValueError(
|
342 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
343 |
+
)
|
344 |
+
|
345 |
+
if len(block_out_channels) != len(down_block_types):
|
346 |
+
raise ValueError(
|
347 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
348 |
+
)
|
349 |
+
|
350 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
351 |
+
raise ValueError(
|
352 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
353 |
+
)
|
354 |
+
|
355 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
356 |
+
raise ValueError(
|
357 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
358 |
+
)
|
359 |
+
|
360 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
361 |
+
raise ValueError(
|
362 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
363 |
+
)
|
364 |
+
|
365 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
366 |
+
raise ValueError(
|
367 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
368 |
+
)
|
369 |
+
|
370 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
371 |
+
raise ValueError(
|
372 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
373 |
+
)
|
374 |
+
|
375 |
+
# input
|
376 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
377 |
+
self.conv_in = nn.Conv2d(
|
378 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
379 |
+
)
|
380 |
+
|
381 |
+
# time
|
382 |
+
if time_embedding_type == "fourier":
|
383 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
384 |
+
if time_embed_dim % 2 != 0:
|
385 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
386 |
+
self.time_proj = GaussianFourierProjection(
|
387 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
388 |
+
)
|
389 |
+
timestep_input_dim = time_embed_dim
|
390 |
+
elif time_embedding_type == "positional":
|
391 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
392 |
+
|
393 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
394 |
+
timestep_input_dim = block_out_channels[0]
|
395 |
+
else:
|
396 |
+
raise ValueError(
|
397 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
398 |
+
)
|
399 |
+
|
400 |
+
self.time_embedding = TimestepEmbedding(
|
401 |
+
timestep_input_dim,
|
402 |
+
time_embed_dim,
|
403 |
+
act_fn=act_fn,
|
404 |
+
post_act_fn=timestep_post_act,
|
405 |
+
cond_proj_dim=time_cond_proj_dim,
|
406 |
+
)
|
407 |
+
|
408 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
409 |
+
encoder_hid_dim_type = "text_proj"
|
410 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
411 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
412 |
+
|
413 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
414 |
+
raise ValueError(
|
415 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
416 |
+
)
|
417 |
+
|
418 |
+
if encoder_hid_dim_type == "text_proj":
|
419 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
420 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
421 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
422 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
423 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
424 |
+
self.encoder_hid_proj = TextImageProjection(
|
425 |
+
text_embed_dim=encoder_hid_dim,
|
426 |
+
image_embed_dim=cross_attention_dim,
|
427 |
+
cross_attention_dim=cross_attention_dim,
|
428 |
+
)
|
429 |
+
elif encoder_hid_dim_type == "image_proj":
|
430 |
+
# Kandinsky 2.2
|
431 |
+
self.encoder_hid_proj = ImageProjection(
|
432 |
+
image_embed_dim=encoder_hid_dim,
|
433 |
+
cross_attention_dim=cross_attention_dim,
|
434 |
+
)
|
435 |
+
elif encoder_hid_dim_type is not None:
|
436 |
+
raise ValueError(
|
437 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
438 |
+
)
|
439 |
+
else:
|
440 |
+
self.encoder_hid_proj = None
|
441 |
+
|
442 |
+
# class embedding
|
443 |
+
if class_embed_type is None and num_class_embeds is not None:
|
444 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
445 |
+
elif class_embed_type == "timestep":
|
446 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
447 |
+
elif class_embed_type == "identity":
|
448 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
449 |
+
elif class_embed_type == "projection":
|
450 |
+
if projection_class_embeddings_input_dim is None:
|
451 |
+
raise ValueError(
|
452 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
453 |
+
)
|
454 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
455 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
456 |
+
# 2. it projects from an arbitrary input dimension.
|
457 |
+
#
|
458 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
459 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
460 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
461 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
462 |
+
elif class_embed_type == "simple_projection":
|
463 |
+
if projection_class_embeddings_input_dim is None:
|
464 |
+
raise ValueError(
|
465 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
466 |
+
)
|
467 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
468 |
+
else:
|
469 |
+
self.class_embedding = None
|
470 |
+
|
471 |
+
if addition_embed_type == "text":
|
472 |
+
if encoder_hid_dim is not None:
|
473 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
474 |
+
else:
|
475 |
+
text_time_embedding_from_dim = cross_attention_dim
|
476 |
+
|
477 |
+
self.add_embedding = TextTimeEmbedding(
|
478 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
479 |
+
)
|
480 |
+
elif addition_embed_type == "text_image":
|
481 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
482 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
483 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
484 |
+
self.add_embedding = TextImageTimeEmbedding(
|
485 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
486 |
+
)
|
487 |
+
elif addition_embed_type == "text_time":
|
488 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
489 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
490 |
+
elif addition_embed_type == "image":
|
491 |
+
# Kandinsky 2.2
|
492 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
493 |
+
elif addition_embed_type == "image_hint":
|
494 |
+
# Kandinsky 2.2 ControlNet
|
495 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
496 |
+
elif addition_embed_type is not None:
|
497 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
498 |
+
|
499 |
+
if time_embedding_act_fn is None:
|
500 |
+
self.time_embed_act = None
|
501 |
+
else:
|
502 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
503 |
+
|
504 |
+
self.down_blocks = nn.ModuleList([])
|
505 |
+
self.up_blocks = nn.ModuleList([])
|
506 |
+
|
507 |
+
if isinstance(only_cross_attention, bool):
|
508 |
+
if mid_block_only_cross_attention is None:
|
509 |
+
mid_block_only_cross_attention = only_cross_attention
|
510 |
+
|
511 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
512 |
+
|
513 |
+
if mid_block_only_cross_attention is None:
|
514 |
+
mid_block_only_cross_attention = False
|
515 |
+
|
516 |
+
if isinstance(num_attention_heads, int):
|
517 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
518 |
+
|
519 |
+
if isinstance(attention_head_dim, int):
|
520 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
521 |
+
|
522 |
+
if isinstance(cross_attention_dim, int):
|
523 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
524 |
+
|
525 |
+
if isinstance(layers_per_block, int):
|
526 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
527 |
+
|
528 |
+
if isinstance(transformer_layers_per_block, int):
|
529 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
530 |
+
|
531 |
+
if class_embeddings_concat:
|
532 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
533 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
534 |
+
# regular time embeddings
|
535 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
536 |
+
else:
|
537 |
+
blocks_time_embed_dim = time_embed_dim
|
538 |
+
|
539 |
+
# down
|
540 |
+
output_channel = block_out_channels[0]
|
541 |
+
for i, down_block_type in enumerate(down_block_types):
|
542 |
+
input_channel = output_channel
|
543 |
+
output_channel = block_out_channels[i]
|
544 |
+
is_final_block = i == len(block_out_channels) - 1
|
545 |
+
|
546 |
+
down_block = get_down_block(
|
547 |
+
down_block_type,
|
548 |
+
num_layers=layers_per_block[i],
|
549 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
550 |
+
in_channels=input_channel,
|
551 |
+
out_channels=output_channel,
|
552 |
+
temb_channels=blocks_time_embed_dim,
|
553 |
+
add_downsample=not is_final_block,
|
554 |
+
resnet_eps=norm_eps,
|
555 |
+
resnet_act_fn=act_fn,
|
556 |
+
resnet_groups=norm_num_groups,
|
557 |
+
cross_attention_dim=cross_attention_dim[i],
|
558 |
+
num_attention_heads=num_attention_heads[i],
|
559 |
+
downsample_padding=downsample_padding,
|
560 |
+
dual_cross_attention=dual_cross_attention,
|
561 |
+
use_linear_projection=use_linear_projection,
|
562 |
+
only_cross_attention=only_cross_attention[i],
|
563 |
+
upcast_attention=upcast_attention,
|
564 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
565 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
566 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
567 |
+
cross_attention_norm=cross_attention_norm,
|
568 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
569 |
+
num_views=num_views,
|
570 |
+
cd_attention_last=cd_attention_last,
|
571 |
+
cd_attention_mid=cd_attention_mid,
|
572 |
+
multiview_attention=multiview_attention,
|
573 |
+
sparse_mv_attention=sparse_mv_attention,
|
574 |
+
selfattn_block=selfattn_block,
|
575 |
+
mvcd_attention=mvcd_attention,
|
576 |
+
use_dino=use_dino
|
577 |
+
)
|
578 |
+
self.down_blocks.append(down_block)
|
579 |
+
|
580 |
+
# mid
|
581 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
582 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
583 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
584 |
+
in_channels=block_out_channels[-1],
|
585 |
+
temb_channels=blocks_time_embed_dim,
|
586 |
+
resnet_eps=norm_eps,
|
587 |
+
resnet_act_fn=act_fn,
|
588 |
+
output_scale_factor=mid_block_scale_factor,
|
589 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
590 |
+
cross_attention_dim=cross_attention_dim[-1],
|
591 |
+
num_attention_heads=num_attention_heads[-1],
|
592 |
+
resnet_groups=norm_num_groups,
|
593 |
+
dual_cross_attention=dual_cross_attention,
|
594 |
+
use_linear_projection=use_linear_projection,
|
595 |
+
upcast_attention=upcast_attention,
|
596 |
+
)
|
597 |
+
# custom MV2D attention block
|
598 |
+
elif mid_block_type == "UNetMidBlockMV2DCrossAttn":
|
599 |
+
self.mid_block = UNetMidBlockMV2DCrossAttn(
|
600 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
601 |
+
in_channels=block_out_channels[-1],
|
602 |
+
temb_channels=blocks_time_embed_dim,
|
603 |
+
resnet_eps=norm_eps,
|
604 |
+
resnet_act_fn=act_fn,
|
605 |
+
output_scale_factor=mid_block_scale_factor,
|
606 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
607 |
+
cross_attention_dim=cross_attention_dim[-1],
|
608 |
+
num_attention_heads=num_attention_heads[-1],
|
609 |
+
resnet_groups=norm_num_groups,
|
610 |
+
dual_cross_attention=dual_cross_attention,
|
611 |
+
use_linear_projection=use_linear_projection,
|
612 |
+
upcast_attention=upcast_attention,
|
613 |
+
num_views=num_views,
|
614 |
+
cd_attention_last=cd_attention_last,
|
615 |
+
cd_attention_mid=cd_attention_mid,
|
616 |
+
multiview_attention=multiview_attention,
|
617 |
+
sparse_mv_attention=sparse_mv_attention,
|
618 |
+
selfattn_block=selfattn_block,
|
619 |
+
mvcd_attention=mvcd_attention,
|
620 |
+
use_dino=use_dino
|
621 |
+
)
|
622 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
623 |
+
self.mid_block = UNetMidBlock2DSimpleCrossAttn(
|
624 |
+
in_channels=block_out_channels[-1],
|
625 |
+
temb_channels=blocks_time_embed_dim,
|
626 |
+
resnet_eps=norm_eps,
|
627 |
+
resnet_act_fn=act_fn,
|
628 |
+
output_scale_factor=mid_block_scale_factor,
|
629 |
+
cross_attention_dim=cross_attention_dim[-1],
|
630 |
+
attention_head_dim=attention_head_dim[-1],
|
631 |
+
resnet_groups=norm_num_groups,
|
632 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
633 |
+
skip_time_act=resnet_skip_time_act,
|
634 |
+
only_cross_attention=mid_block_only_cross_attention,
|
635 |
+
cross_attention_norm=cross_attention_norm,
|
636 |
+
)
|
637 |
+
elif mid_block_type is None:
|
638 |
+
self.mid_block = None
|
639 |
+
else:
|
640 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
641 |
+
|
642 |
+
self.addition_downsample = addition_downsample
|
643 |
+
if self.addition_downsample:
|
644 |
+
inc = block_out_channels[-1]
|
645 |
+
self.downsample = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
646 |
+
self.conv_block = nn.ModuleList()
|
647 |
+
self.conv_block.append(BasicConvBlock(inc, addition_channels[0], stride=1))
|
648 |
+
for dim_ in addition_channels[1:-1]:
|
649 |
+
self.conv_block.append(BasicConvBlock(dim_, dim_, stride=1))
|
650 |
+
self.conv_block.append(BasicConvBlock(dim_, inc))
|
651 |
+
self.addition_conv_out = nn.Conv2d(inc, inc, kernel_size=1, bias=False)
|
652 |
+
nn.init.zeros_(self.addition_conv_out.weight.data)
|
653 |
+
self.addition_act_out = nn.SiLU()
|
654 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
655 |
+
|
656 |
+
self.regress_elevation = regress_elevation
|
657 |
+
self.regress_focal_length = regress_focal_length
|
658 |
+
if regress_elevation or regress_focal_length:
|
659 |
+
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
660 |
+
self.camera_embedding = TimestepEmbedding(projection_camera_embeddings_input_dim, time_embed_dim=time_embed_dim)
|
661 |
+
|
662 |
+
regress_in_dim = block_out_channels[-1]*2 if mvcd_attention else block_out_channels
|
663 |
+
|
664 |
+
if regress_elevation:
|
665 |
+
self.elevation_regressor = ResidualLiner(regress_in_dim, 1, 1280, act=None, num_block=num_regress_blocks)
|
666 |
+
if regress_focal_length:
|
667 |
+
self.focal_regressor = ResidualLiner(regress_in_dim, 1, 1280, act=None, num_block=num_regress_blocks)
|
668 |
+
'''
|
669 |
+
self.regress_elevation = regress_elevation
|
670 |
+
self.regress_focal_length = regress_focal_length
|
671 |
+
if regress_elevation and (not regress_focal_length):
|
672 |
+
print("Regressing elevation")
|
673 |
+
cam_dim = 1
|
674 |
+
elif regress_focal_length and (not regress_elevation):
|
675 |
+
print("Regressing focal length")
|
676 |
+
cam_dim = 6
|
677 |
+
elif regress_elevation and regress_focal_length:
|
678 |
+
print("Regressing both elevation and focal length")
|
679 |
+
cam_dim = 7
|
680 |
+
else:
|
681 |
+
cam_dim = 0
|
682 |
+
assert projection_camera_embeddings_input_dim == 2*cam_dim, "projection_camera_embeddings_input_dim should be 2*cam_dim"
|
683 |
+
if regress_elevation or regress_focal_length:
|
684 |
+
self.elevation_regressor = nn.ModuleList([
|
685 |
+
nn.Linear(block_out_channels[-1], 1280),
|
686 |
+
nn.SiLU(),
|
687 |
+
nn.Linear(1280, 1280),
|
688 |
+
nn.SiLU(),
|
689 |
+
nn.Linear(1280, cam_dim)
|
690 |
+
])
|
691 |
+
self.pool = nn.AdaptiveAvgPool2d((1, 1))
|
692 |
+
self.focal_act = nn.Softmax(dim=-1)
|
693 |
+
self.camera_embedding = TimestepEmbedding(projection_camera_embeddings_input_dim, time_embed_dim=time_embed_dim)
|
694 |
+
'''
|
695 |
+
|
696 |
+
# count how many layers upsample the images
|
697 |
+
self.num_upsamplers = 0
|
698 |
+
|
699 |
+
# up
|
700 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
701 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
702 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
703 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
704 |
+
reversed_transformer_layers_per_block = list(reversed(transformer_layers_per_block))
|
705 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
706 |
+
|
707 |
+
output_channel = reversed_block_out_channels[0]
|
708 |
+
for i, up_block_type in enumerate(up_block_types):
|
709 |
+
is_final_block = i == len(block_out_channels) - 1
|
710 |
+
|
711 |
+
prev_output_channel = output_channel
|
712 |
+
output_channel = reversed_block_out_channels[i]
|
713 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
714 |
+
|
715 |
+
# add upsample block for all BUT final layer
|
716 |
+
if not is_final_block:
|
717 |
+
add_upsample = True
|
718 |
+
self.num_upsamplers += 1
|
719 |
+
else:
|
720 |
+
add_upsample = False
|
721 |
+
|
722 |
+
up_block = get_up_block(
|
723 |
+
up_block_type,
|
724 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
725 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
726 |
+
in_channels=input_channel,
|
727 |
+
out_channels=output_channel,
|
728 |
+
prev_output_channel=prev_output_channel,
|
729 |
+
temb_channels=blocks_time_embed_dim,
|
730 |
+
add_upsample=add_upsample,
|
731 |
+
resnet_eps=norm_eps,
|
732 |
+
resnet_act_fn=act_fn,
|
733 |
+
resnet_groups=norm_num_groups,
|
734 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
735 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
736 |
+
dual_cross_attention=dual_cross_attention,
|
737 |
+
use_linear_projection=use_linear_projection,
|
738 |
+
only_cross_attention=only_cross_attention[i],
|
739 |
+
upcast_attention=upcast_attention,
|
740 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
741 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
742 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
743 |
+
cross_attention_norm=cross_attention_norm,
|
744 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
745 |
+
num_views=num_views,
|
746 |
+
cd_attention_last=cd_attention_last,
|
747 |
+
cd_attention_mid=cd_attention_mid,
|
748 |
+
multiview_attention=multiview_attention,
|
749 |
+
sparse_mv_attention=sparse_mv_attention,
|
750 |
+
selfattn_block=selfattn_block,
|
751 |
+
mvcd_attention=mvcd_attention,
|
752 |
+
use_dino=use_dino
|
753 |
+
)
|
754 |
+
self.up_blocks.append(up_block)
|
755 |
+
prev_output_channel = output_channel
|
756 |
+
|
757 |
+
# out
|
758 |
+
if norm_num_groups is not None:
|
759 |
+
self.conv_norm_out = nn.GroupNorm(
|
760 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
761 |
+
)
|
762 |
+
|
763 |
+
self.conv_act = get_activation(act_fn)
|
764 |
+
|
765 |
+
else:
|
766 |
+
self.conv_norm_out = None
|
767 |
+
self.conv_act = None
|
768 |
+
|
769 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
770 |
+
self.conv_out = nn.Conv2d(
|
771 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
772 |
+
)
|
773 |
+
|
774 |
+
@property
|
775 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
776 |
+
r"""
|
777 |
+
Returns:
|
778 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
779 |
+
indexed by its weight name.
|
780 |
+
"""
|
781 |
+
# set recursively
|
782 |
+
processors = {}
|
783 |
+
|
784 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
785 |
+
if hasattr(module, "set_processor"):
|
786 |
+
processors[f"{name}.processor"] = module.processor
|
787 |
+
|
788 |
+
for sub_name, child in module.named_children():
|
789 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
790 |
+
|
791 |
+
return processors
|
792 |
+
|
793 |
+
for name, module in self.named_children():
|
794 |
+
fn_recursive_add_processors(name, module, processors)
|
795 |
+
|
796 |
+
return processors
|
797 |
+
|
798 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
799 |
+
r"""
|
800 |
+
Sets the attention processor to use to compute attention.
|
801 |
+
|
802 |
+
Parameters:
|
803 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
804 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
805 |
+
for **all** `Attention` layers.
|
806 |
+
|
807 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
808 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
809 |
+
|
810 |
+
"""
|
811 |
+
count = len(self.attn_processors.keys())
|
812 |
+
|
813 |
+
if isinstance(processor, dict) and len(processor) != count:
|
814 |
+
raise ValueError(
|
815 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
816 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
817 |
+
)
|
818 |
+
|
819 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
820 |
+
if hasattr(module, "set_processor"):
|
821 |
+
if not isinstance(processor, dict):
|
822 |
+
module.set_processor(processor)
|
823 |
+
else:
|
824 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
825 |
+
|
826 |
+
for sub_name, child in module.named_children():
|
827 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
828 |
+
|
829 |
+
for name, module in self.named_children():
|
830 |
+
fn_recursive_attn_processor(name, module, processor)
|
831 |
+
|
832 |
+
def set_default_attn_processor(self):
|
833 |
+
"""
|
834 |
+
Disables custom attention processors and sets the default attention implementation.
|
835 |
+
"""
|
836 |
+
self.set_attn_processor(AttnProcessor())
|
837 |
+
|
838 |
+
def set_attention_slice(self, slice_size):
|
839 |
+
r"""
|
840 |
+
Enable sliced attention computation.
|
841 |
+
|
842 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
843 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
844 |
+
|
845 |
+
Args:
|
846 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
847 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
848 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
849 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
850 |
+
must be a multiple of `slice_size`.
|
851 |
+
"""
|
852 |
+
sliceable_head_dims = []
|
853 |
+
|
854 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
855 |
+
if hasattr(module, "set_attention_slice"):
|
856 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
857 |
+
|
858 |
+
for child in module.children():
|
859 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
860 |
+
|
861 |
+
# retrieve number of attention layers
|
862 |
+
for module in self.children():
|
863 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
864 |
+
|
865 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
866 |
+
|
867 |
+
if slice_size == "auto":
|
868 |
+
# half the attention head size is usually a good trade-off between
|
869 |
+
# speed and memory
|
870 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
871 |
+
elif slice_size == "max":
|
872 |
+
# make smallest slice possible
|
873 |
+
slice_size = num_sliceable_layers * [1]
|
874 |
+
|
875 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
876 |
+
|
877 |
+
if len(slice_size) != len(sliceable_head_dims):
|
878 |
+
raise ValueError(
|
879 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
880 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
881 |
+
)
|
882 |
+
|
883 |
+
for i in range(len(slice_size)):
|
884 |
+
size = slice_size[i]
|
885 |
+
dim = sliceable_head_dims[i]
|
886 |
+
if size is not None and size > dim:
|
887 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
888 |
+
|
889 |
+
# Recursively walk through all the children.
|
890 |
+
# Any children which exposes the set_attention_slice method
|
891 |
+
# gets the message
|
892 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
893 |
+
if hasattr(module, "set_attention_slice"):
|
894 |
+
module.set_attention_slice(slice_size.pop())
|
895 |
+
|
896 |
+
for child in module.children():
|
897 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
898 |
+
|
899 |
+
reversed_slice_size = list(reversed(slice_size))
|
900 |
+
for module in self.children():
|
901 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
902 |
+
|
903 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
904 |
+
if isinstance(module, (CrossAttnDownBlock2D, CrossAttnDownBlockMV2D, DownBlock2D, CrossAttnUpBlock2D, CrossAttnUpBlockMV2D, UpBlock2D)):
|
905 |
+
module.gradient_checkpointing = value
|
906 |
+
|
907 |
+
def forward(
|
908 |
+
self,
|
909 |
+
sample: torch.FloatTensor,
|
910 |
+
timestep: Union[torch.Tensor, float, int],
|
911 |
+
encoder_hidden_states: torch.Tensor,
|
912 |
+
class_labels: Optional[torch.Tensor] = None,
|
913 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
914 |
+
attention_mask: Optional[torch.Tensor] = None,
|
915 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
916 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
917 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
918 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
919 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
920 |
+
dino_feature: Optional[torch.Tensor] = None,
|
921 |
+
return_dict: bool = True,
|
922 |
+
vis_max_min: bool = False,
|
923 |
+
) -> Union[UNetMV2DConditionOutput, Tuple]:
|
924 |
+
r"""
|
925 |
+
The [`UNet2DConditionModel`] forward method.
|
926 |
+
|
927 |
+
Args:
|
928 |
+
sample (`torch.FloatTensor`):
|
929 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
930 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
931 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
932 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
933 |
+
encoder_attention_mask (`torch.Tensor`):
|
934 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
935 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
936 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
937 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
938 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
939 |
+
tuple.
|
940 |
+
cross_attention_kwargs (`dict`, *optional*):
|
941 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
942 |
+
added_cond_kwargs: (`dict`, *optional*):
|
943 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
944 |
+
are passed along to the UNet blocks.
|
945 |
+
|
946 |
+
Returns:
|
947 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
948 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
949 |
+
a `tuple` is returned where the first element is the sample tensor.
|
950 |
+
"""
|
951 |
+
record_max_min = {}
|
952 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
953 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
954 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
955 |
+
# on the fly if necessary.
|
956 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
957 |
+
|
958 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
959 |
+
forward_upsample_size = False
|
960 |
+
upsample_size = None
|
961 |
+
|
962 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
963 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
964 |
+
forward_upsample_size = True
|
965 |
+
|
966 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
967 |
+
# expects mask of shape:
|
968 |
+
# [batch, key_tokens]
|
969 |
+
# adds singleton query_tokens dimension:
|
970 |
+
# [batch, 1, key_tokens]
|
971 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
972 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
973 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
974 |
+
if attention_mask is not None:
|
975 |
+
# assume that mask is expressed as:
|
976 |
+
# (1 = keep, 0 = discard)
|
977 |
+
# convert mask into a bias that can be added to attention scores:
|
978 |
+
# (keep = +0, discard = -10000.0)
|
979 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
980 |
+
attention_mask = attention_mask.unsqueeze(1)
|
981 |
+
|
982 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
983 |
+
if encoder_attention_mask is not None:
|
984 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
985 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
986 |
+
|
987 |
+
# 0. center input if necessary
|
988 |
+
if self.config.center_input_sample:
|
989 |
+
sample = 2 * sample - 1.0
|
990 |
+
# 1. time
|
991 |
+
timesteps = timestep
|
992 |
+
if not torch.is_tensor(timesteps):
|
993 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
994 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
995 |
+
is_mps = sample.device.type == "mps"
|
996 |
+
if isinstance(timestep, float):
|
997 |
+
dtype = torch.float32 if is_mps else torch.float64
|
998 |
+
else:
|
999 |
+
dtype = torch.int32 if is_mps else torch.int64
|
1000 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
1001 |
+
elif len(timesteps.shape) == 0:
|
1002 |
+
timesteps = timesteps[None].to(sample.device)
|
1003 |
+
|
1004 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
1005 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1006 |
+
|
1007 |
+
t_emb = self.time_proj(timesteps)
|
1008 |
+
|
1009 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1010 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1011 |
+
# there might be better ways to encapsulate this.
|
1012 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1013 |
+
|
1014 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1015 |
+
aug_emb = None
|
1016 |
+
if self.class_embedding is not None:
|
1017 |
+
if class_labels is None:
|
1018 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1019 |
+
|
1020 |
+
if self.config.class_embed_type == "timestep":
|
1021 |
+
class_labels = self.time_proj(class_labels)
|
1022 |
+
|
1023 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1024 |
+
# there might be better ways to encapsulate this.
|
1025 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1026 |
+
|
1027 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1028 |
+
if self.config.class_embeddings_concat:
|
1029 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1030 |
+
else:
|
1031 |
+
emb = emb + class_emb
|
1032 |
+
|
1033 |
+
if self.config.addition_embed_type == "text":
|
1034 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1035 |
+
elif self.config.addition_embed_type == "text_image":
|
1036 |
+
# Kandinsky 2.1 - style
|
1037 |
+
if "image_embeds" not in added_cond_kwargs:
|
1038 |
+
raise ValueError(
|
1039 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1040 |
+
)
|
1041 |
+
|
1042 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1043 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1044 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1045 |
+
elif self.config.addition_embed_type == "text_time":
|
1046 |
+
# SDXL - style
|
1047 |
+
if "text_embeds" not in added_cond_kwargs:
|
1048 |
+
raise ValueError(
|
1049 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1050 |
+
)
|
1051 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1052 |
+
if "time_ids" not in added_cond_kwargs:
|
1053 |
+
raise ValueError(
|
1054 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1055 |
+
)
|
1056 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1057 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1058 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1059 |
+
|
1060 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1061 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1062 |
+
aug_emb = self.add_embedding(add_embeds)
|
1063 |
+
elif self.config.addition_embed_type == "image":
|
1064 |
+
# Kandinsky 2.2 - style
|
1065 |
+
if "image_embeds" not in added_cond_kwargs:
|
1066 |
+
raise ValueError(
|
1067 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1068 |
+
)
|
1069 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1070 |
+
aug_emb = self.add_embedding(image_embs)
|
1071 |
+
elif self.config.addition_embed_type == "image_hint":
|
1072 |
+
# Kandinsky 2.2 - style
|
1073 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1074 |
+
raise ValueError(
|
1075 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1076 |
+
)
|
1077 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1078 |
+
hint = added_cond_kwargs.get("hint")
|
1079 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1080 |
+
sample = torch.cat([sample, hint], dim=1)
|
1081 |
+
|
1082 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1083 |
+
emb_pre_act = emb
|
1084 |
+
if self.time_embed_act is not None:
|
1085 |
+
emb = self.time_embed_act(emb)
|
1086 |
+
|
1087 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1088 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1089 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1090 |
+
# Kadinsky 2.1 - style
|
1091 |
+
if "image_embeds" not in added_cond_kwargs:
|
1092 |
+
raise ValueError(
|
1093 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1097 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1098 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1099 |
+
# Kandinsky 2.2 - style
|
1100 |
+
if "image_embeds" not in added_cond_kwargs:
|
1101 |
+
raise ValueError(
|
1102 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1103 |
+
)
|
1104 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1105 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1106 |
+
# 2. pre-process
|
1107 |
+
sample = self.conv_in(sample)
|
1108 |
+
# 3. down
|
1109 |
+
|
1110 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1111 |
+
is_adapter = mid_block_additional_residual is None and down_block_additional_residuals is not None
|
1112 |
+
|
1113 |
+
down_block_res_samples = (sample,)
|
1114 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
1115 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1116 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1117 |
+
additional_residuals = {}
|
1118 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1119 |
+
additional_residuals["additional_residuals"] = down_block_additional_residuals.pop(0)
|
1120 |
+
|
1121 |
+
sample, res_samples = downsample_block(
|
1122 |
+
hidden_states=sample,
|
1123 |
+
temb=emb,
|
1124 |
+
encoder_hidden_states=encoder_hidden_states,
|
1125 |
+
dino_feature=dino_feature,
|
1126 |
+
attention_mask=attention_mask,
|
1127 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1128 |
+
encoder_attention_mask=encoder_attention_mask,
|
1129 |
+
**additional_residuals,
|
1130 |
+
)
|
1131 |
+
else:
|
1132 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1133 |
+
|
1134 |
+
if is_adapter and len(down_block_additional_residuals) > 0:
|
1135 |
+
sample += down_block_additional_residuals.pop(0)
|
1136 |
+
|
1137 |
+
down_block_res_samples += res_samples
|
1138 |
+
|
1139 |
+
if is_controlnet:
|
1140 |
+
new_down_block_res_samples = ()
|
1141 |
+
|
1142 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1143 |
+
down_block_res_samples, down_block_additional_residuals
|
1144 |
+
):
|
1145 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1146 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1147 |
+
|
1148 |
+
down_block_res_samples = new_down_block_res_samples
|
1149 |
+
|
1150 |
+
if self.addition_downsample:
|
1151 |
+
global_sample = sample
|
1152 |
+
global_sample = self.downsample(global_sample)
|
1153 |
+
for layer in self.conv_block:
|
1154 |
+
global_sample = layer(global_sample)
|
1155 |
+
global_sample = self.addition_act_out(self.addition_conv_out(global_sample))
|
1156 |
+
global_sample = self.upsample(global_sample)
|
1157 |
+
# 4. mid
|
1158 |
+
if self.mid_block is not None:
|
1159 |
+
sample = self.mid_block(
|
1160 |
+
sample,
|
1161 |
+
emb,
|
1162 |
+
encoder_hidden_states=encoder_hidden_states,
|
1163 |
+
dino_feature=dino_feature,
|
1164 |
+
attention_mask=attention_mask,
|
1165 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1166 |
+
encoder_attention_mask=encoder_attention_mask,
|
1167 |
+
)
|
1168 |
+
# 4.1 regress elevation and focal length
|
1169 |
+
# # predict elevation -> embed -> projection -> add to time emb
|
1170 |
+
if self.regress_elevation or self.regress_focal_length:
|
1171 |
+
pool_embeds = self.pool(sample.detach()).squeeze(-1).squeeze(-1) # (2B, C)
|
1172 |
+
if self.mvcd_attention:
|
1173 |
+
pool_embeds_normal, pool_embeds_color = torch.chunk(pool_embeds, 2, dim=0)
|
1174 |
+
pool_embeds = torch.cat([pool_embeds_normal, pool_embeds_color], dim=-1) # (B, 2C)
|
1175 |
+
pose_pred = []
|
1176 |
+
if self.regress_elevation:
|
1177 |
+
ele_pred = self.elevation_regressor(pool_embeds)
|
1178 |
+
ele_pred = rearrange(ele_pred, '(b v) c -> b v c', v=self.num_views)
|
1179 |
+
ele_pred = torch.mean(ele_pred, dim=1)
|
1180 |
+
pose_pred.append(ele_pred) # b, c
|
1181 |
+
|
1182 |
+
if self.regress_focal_length:
|
1183 |
+
focal_pred = self.focal_regressor(pool_embeds)
|
1184 |
+
focal_pred = rearrange(focal_pred, '(b v) c -> b v c', v=self.num_views)
|
1185 |
+
focal_pred = torch.mean(focal_pred, dim=1)
|
1186 |
+
pose_pred.append(focal_pred)
|
1187 |
+
pose_pred = torch.cat(pose_pred, dim=-1)
|
1188 |
+
# 'e_de_da_sincos', (B, 2)
|
1189 |
+
pose_embeds = torch.cat([
|
1190 |
+
torch.sin(pose_pred),
|
1191 |
+
torch.cos(pose_pred)
|
1192 |
+
], dim=-1)
|
1193 |
+
pose_embeds = self.camera_embedding(pose_embeds)
|
1194 |
+
pose_embeds = torch.repeat_interleave(pose_embeds, self.num_views, 0)
|
1195 |
+
if self.mvcd_attention:
|
1196 |
+
pose_embeds = torch.cat([pose_embeds,] * 2, dim=0)
|
1197 |
+
|
1198 |
+
emb = pose_embeds + emb_pre_act
|
1199 |
+
if self.time_embed_act is not None:
|
1200 |
+
emb = self.time_embed_act(emb)
|
1201 |
+
|
1202 |
+
if is_controlnet:
|
1203 |
+
sample = sample + mid_block_additional_residual
|
1204 |
+
|
1205 |
+
if self.addition_downsample:
|
1206 |
+
sample = sample + global_sample
|
1207 |
+
|
1208 |
+
# 5. up
|
1209 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1210 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1211 |
+
|
1212 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1213 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1214 |
+
|
1215 |
+
# if we have not reached the final block and need to forward the
|
1216 |
+
# upsample size, we do it here
|
1217 |
+
if not is_final_block and forward_upsample_size:
|
1218 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1219 |
+
|
1220 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1221 |
+
sample = upsample_block(
|
1222 |
+
hidden_states=sample,
|
1223 |
+
temb=emb,
|
1224 |
+
res_hidden_states_tuple=res_samples,
|
1225 |
+
encoder_hidden_states=encoder_hidden_states,
|
1226 |
+
dino_feature=dino_feature,
|
1227 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1228 |
+
upsample_size=upsample_size,
|
1229 |
+
attention_mask=attention_mask,
|
1230 |
+
encoder_attention_mask=encoder_attention_mask,
|
1231 |
+
)
|
1232 |
+
else:
|
1233 |
+
sample = upsample_block(
|
1234 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
1235 |
+
)
|
1236 |
+
if torch.isnan(sample).any() or torch.isinf(sample).any():
|
1237 |
+
print("NAN in sample, stop training.")
|
1238 |
+
exit()
|
1239 |
+
# 6. post-process
|
1240 |
+
if self.conv_norm_out:
|
1241 |
+
sample = self.conv_norm_out(sample)
|
1242 |
+
sample = self.conv_act(sample)
|
1243 |
+
sample = self.conv_out(sample)
|
1244 |
+
if not return_dict:
|
1245 |
+
return (sample, pose_pred)
|
1246 |
+
if self.regress_elevation or self.regress_focal_length:
|
1247 |
+
return UNetMV2DConditionOutput(sample=sample), pose_pred
|
1248 |
+
else:
|
1249 |
+
return UNetMV2DConditionOutput(sample=sample)
|
1250 |
+
|
1251 |
+
|
1252 |
+
@classmethod
|
1253 |
+
def from_pretrained_2d(
|
1254 |
+
cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
1255 |
+
camera_embedding_type: str, num_views: int, sample_size: int,
|
1256 |
+
zero_init_conv_in: bool = True, zero_init_camera_projection: bool = False,
|
1257 |
+
projection_camera_embeddings_input_dim: int=2,
|
1258 |
+
cd_attention_last: bool = False, num_regress_blocks: int = 4,
|
1259 |
+
cd_attention_mid: bool = False, multiview_attention: bool = True,
|
1260 |
+
sparse_mv_attention: bool = False, selfattn_block: str = 'custom', mvcd_attention: bool = False,
|
1261 |
+
in_channels: int = 8, out_channels: int = 4, unclip: bool = False, regress_elevation: bool = False, regress_focal_length: bool = False,
|
1262 |
+
init_mvattn_with_selfattn: bool= False, use_dino: bool = False, addition_downsample: bool = False,
|
1263 |
+
**kwargs
|
1264 |
+
):
|
1265 |
+
r"""
|
1266 |
+
Instantiate a pretrained PyTorch model from a pretrained model configuration.
|
1267 |
+
|
1268 |
+
The model is set in evaluation mode - `model.eval()` - by default, and dropout modules are deactivated. To
|
1269 |
+
train the model, set it back in training mode with `model.train()`.
|
1270 |
+
|
1271 |
+
Parameters:
|
1272 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
1273 |
+
Can be either:
|
1274 |
+
|
1275 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
1276 |
+
the Hub.
|
1277 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
1278 |
+
with [`~ModelMixin.save_pretrained`].
|
1279 |
+
|
1280 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
1281 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
1282 |
+
is not used.
|
1283 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
1284 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
1285 |
+
dtype is automatically derived from the model's weights.
|
1286 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
1287 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
1288 |
+
cached versions if they exist.
|
1289 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
1290 |
+
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
|
1291 |
+
incompletely downloaded files are deleted.
|
1292 |
+
proxies (`Dict[str, str]`, *optional*):
|
1293 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
1294 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
1295 |
+
output_loading_info (`bool`, *optional*, defaults to `False`):
|
1296 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
1297 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
1298 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
1299 |
+
won't be downloaded from the Hub.
|
1300 |
+
use_auth_token (`str` or *bool*, *optional*):
|
1301 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
1302 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
1303 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
1304 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
1305 |
+
allowed by Git.
|
1306 |
+
from_flax (`bool`, *optional*, defaults to `False`):
|
1307 |
+
Load the model weights from a Flax checkpoint save file.
|
1308 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
1309 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
1310 |
+
mirror (`str`, *optional*):
|
1311 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
1312 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
1313 |
+
information.
|
1314 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
1315 |
+
A map that specifies where each submodule should go. It doesn't need to be defined for each
|
1316 |
+
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
|
1317 |
+
same device.
|
1318 |
+
|
1319 |
+
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
|
1320 |
+
more information about each option see [designing a device
|
1321 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
1322 |
+
max_memory (`Dict`, *optional*):
|
1323 |
+
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
|
1324 |
+
each GPU and the available CPU RAM if unset.
|
1325 |
+
offload_folder (`str` or `os.PathLike`, *optional*):
|
1326 |
+
The path to offload weights if `device_map` contains the value `"disk"`.
|
1327 |
+
offload_state_dict (`bool`, *optional*):
|
1328 |
+
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
|
1329 |
+
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
|
1330 |
+
when there is some disk offload.
|
1331 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
1332 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
1333 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
1334 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
1335 |
+
argument to `True` will raise an error.
|
1336 |
+
variant (`str`, *optional*):
|
1337 |
+
Load weights from a specified `variant` filename such as `"fp16"` or `"ema"`. This is ignored when
|
1338 |
+
loading `from_flax`.
|
1339 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
1340 |
+
If set to `None`, the `safetensors` weights are downloaded if they're available **and** if the
|
1341 |
+
`safetensors` library is installed. If set to `True`, the model is forcibly loaded from `safetensors`
|
1342 |
+
weights. If set to `False`, `safetensors` weights are not loaded.
|
1343 |
+
|
1344 |
+
<Tip>
|
1345 |
+
|
1346 |
+
To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
|
1347 |
+
`huggingface-cli login`. You can also activate the special
|
1348 |
+
["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a
|
1349 |
+
firewalled environment.
|
1350 |
+
|
1351 |
+
</Tip>
|
1352 |
+
|
1353 |
+
Example:
|
1354 |
+
|
1355 |
+
```py
|
1356 |
+
from diffusers import UNet2DConditionModel
|
1357 |
+
|
1358 |
+
unet = UNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="unet")
|
1359 |
+
```
|
1360 |
+
|
1361 |
+
If you get the error message below, you need to finetune the weights for your downstream task:
|
1362 |
+
|
1363 |
+
```bash
|
1364 |
+
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
|
1365 |
+
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
|
1366 |
+
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
|
1367 |
+
```
|
1368 |
+
"""
|
1369 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
1370 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
1371 |
+
force_download = kwargs.pop("force_download", False)
|
1372 |
+
from_flax = kwargs.pop("from_flax", False)
|
1373 |
+
resume_download = kwargs.pop("resume_download", False)
|
1374 |
+
proxies = kwargs.pop("proxies", None)
|
1375 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
1376 |
+
local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
|
1377 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
1378 |
+
revision = kwargs.pop("revision", None)
|
1379 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
1380 |
+
subfolder = kwargs.pop("subfolder", None)
|
1381 |
+
device_map = kwargs.pop("device_map", None)
|
1382 |
+
max_memory = kwargs.pop("max_memory", None)
|
1383 |
+
offload_folder = kwargs.pop("offload_folder", None)
|
1384 |
+
offload_state_dict = kwargs.pop("offload_state_dict", False)
|
1385 |
+
variant = kwargs.pop("variant", None)
|
1386 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
1387 |
+
|
1388 |
+
if use_safetensors:
|
1389 |
+
raise ValueError(
|
1390 |
+
"`use_safetensors`=True but safetensors is not installed. Please install safetensors with `pip install safetensors"
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
allow_pickle = False
|
1394 |
+
if use_safetensors is None:
|
1395 |
+
use_safetensors = True
|
1396 |
+
allow_pickle = True
|
1397 |
+
|
1398 |
+
if device_map is not None and not is_accelerate_available():
|
1399 |
+
raise NotImplementedError(
|
1400 |
+
"Loading and dispatching requires `accelerate`. Please make sure to install accelerate or set"
|
1401 |
+
" `device_map=None`. You can install accelerate with `pip install accelerate`."
|
1402 |
+
)
|
1403 |
+
|
1404 |
+
# Check if we can handle device_map and dispatching the weights
|
1405 |
+
if device_map is not None and not is_torch_version(">=", "1.9.0"):
|
1406 |
+
raise NotImplementedError(
|
1407 |
+
"Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
1408 |
+
" `device_map=None`."
|
1409 |
+
)
|
1410 |
+
|
1411 |
+
# Load config if we don't provide a configuration
|
1412 |
+
config_path = pretrained_model_name_or_path
|
1413 |
+
|
1414 |
+
user_agent = {
|
1415 |
+
"diffusers": __version__,
|
1416 |
+
"file_type": "model",
|
1417 |
+
"framework": "pytorch",
|
1418 |
+
}
|
1419 |
+
|
1420 |
+
# load config
|
1421 |
+
config, unused_kwargs, commit_hash = cls.load_config(
|
1422 |
+
config_path,
|
1423 |
+
cache_dir=cache_dir,
|
1424 |
+
return_unused_kwargs=True,
|
1425 |
+
return_commit_hash=True,
|
1426 |
+
force_download=force_download,
|
1427 |
+
resume_download=resume_download,
|
1428 |
+
proxies=proxies,
|
1429 |
+
local_files_only=local_files_only,
|
1430 |
+
use_auth_token=use_auth_token,
|
1431 |
+
revision=revision,
|
1432 |
+
subfolder=subfolder,
|
1433 |
+
device_map=device_map,
|
1434 |
+
max_memory=max_memory,
|
1435 |
+
offload_folder=offload_folder,
|
1436 |
+
offload_state_dict=offload_state_dict,
|
1437 |
+
user_agent=user_agent,
|
1438 |
+
**kwargs,
|
1439 |
+
)
|
1440 |
+
|
1441 |
+
# modify config
|
1442 |
+
config["_class_name"] = cls.__name__
|
1443 |
+
config['in_channels'] = in_channels
|
1444 |
+
config['out_channels'] = out_channels
|
1445 |
+
config['sample_size'] = sample_size # training resolution
|
1446 |
+
config['num_views'] = num_views
|
1447 |
+
config['cd_attention_last'] = cd_attention_last
|
1448 |
+
config['cd_attention_mid'] = cd_attention_mid
|
1449 |
+
config['multiview_attention'] = multiview_attention
|
1450 |
+
config['sparse_mv_attention'] = sparse_mv_attention
|
1451 |
+
config['selfattn_block'] = selfattn_block
|
1452 |
+
config['mvcd_attention'] = mvcd_attention
|
1453 |
+
config["down_block_types"] = [
|
1454 |
+
"CrossAttnDownBlockMV2D",
|
1455 |
+
"CrossAttnDownBlockMV2D",
|
1456 |
+
"CrossAttnDownBlockMV2D",
|
1457 |
+
"DownBlock2D"
|
1458 |
+
]
|
1459 |
+
config['mid_block_type'] = "UNetMidBlockMV2DCrossAttn"
|
1460 |
+
config["up_block_types"] = [
|
1461 |
+
"UpBlock2D",
|
1462 |
+
"CrossAttnUpBlockMV2D",
|
1463 |
+
"CrossAttnUpBlockMV2D",
|
1464 |
+
"CrossAttnUpBlockMV2D"
|
1465 |
+
]
|
1466 |
+
|
1467 |
+
|
1468 |
+
config['regress_elevation'] = regress_elevation # true
|
1469 |
+
config['regress_focal_length'] = regress_focal_length # true
|
1470 |
+
config['projection_camera_embeddings_input_dim'] = projection_camera_embeddings_input_dim # 2 for elevation and 10 for focal_length
|
1471 |
+
config['use_dino'] = use_dino
|
1472 |
+
config['num_regress_blocks'] = num_regress_blocks
|
1473 |
+
config['addition_downsample'] = addition_downsample
|
1474 |
+
# load model
|
1475 |
+
model_file = None
|
1476 |
+
if from_flax:
|
1477 |
+
raise NotImplementedError
|
1478 |
+
else:
|
1479 |
+
if use_safetensors:
|
1480 |
+
try:
|
1481 |
+
model_file = _get_model_file(
|
1482 |
+
pretrained_model_name_or_path,
|
1483 |
+
weights_name=_add_variant(SAFETENSORS_WEIGHTS_NAME, variant),
|
1484 |
+
cache_dir=cache_dir,
|
1485 |
+
force_download=force_download,
|
1486 |
+
resume_download=resume_download,
|
1487 |
+
proxies=proxies,
|
1488 |
+
local_files_only=local_files_only,
|
1489 |
+
use_auth_token=use_auth_token,
|
1490 |
+
revision=revision,
|
1491 |
+
subfolder=subfolder,
|
1492 |
+
user_agent=user_agent,
|
1493 |
+
commit_hash=commit_hash,
|
1494 |
+
)
|
1495 |
+
except IOError as e:
|
1496 |
+
if not allow_pickle:
|
1497 |
+
raise e
|
1498 |
+
pass
|
1499 |
+
if model_file is None:
|
1500 |
+
model_file = _get_model_file(
|
1501 |
+
pretrained_model_name_or_path,
|
1502 |
+
weights_name=_add_variant(WEIGHTS_NAME, variant),
|
1503 |
+
cache_dir=cache_dir,
|
1504 |
+
force_download=force_download,
|
1505 |
+
resume_download=resume_download,
|
1506 |
+
proxies=proxies,
|
1507 |
+
local_files_only=local_files_only,
|
1508 |
+
use_auth_token=use_auth_token,
|
1509 |
+
revision=revision,
|
1510 |
+
subfolder=subfolder,
|
1511 |
+
user_agent=user_agent,
|
1512 |
+
commit_hash=commit_hash,
|
1513 |
+
)
|
1514 |
+
|
1515 |
+
model = cls.from_config(config, **unused_kwargs)
|
1516 |
+
import copy
|
1517 |
+
state_dict_pretrain = load_state_dict(model_file, variant=variant)
|
1518 |
+
state_dict = copy.deepcopy(state_dict_pretrain)
|
1519 |
+
|
1520 |
+
if init_mvattn_with_selfattn:
|
1521 |
+
for key in state_dict_pretrain:
|
1522 |
+
if 'attn1' in key:
|
1523 |
+
key_mv = key.replace('attn1', 'attn_mv')
|
1524 |
+
state_dict[key_mv] = state_dict_pretrain[key]
|
1525 |
+
if 'to_out.0.weight' in key:
|
1526 |
+
nn.init.zeros_(state_dict[key_mv].data)
|
1527 |
+
if 'transformer_blocks' in key and 'norm1' in key: # in case that initialize the norm layer in resnet block
|
1528 |
+
key_mv = key.replace('norm1', 'norm_mv')
|
1529 |
+
state_dict[key_mv] = state_dict_pretrain[key]
|
1530 |
+
# del state_dict_pretrain
|
1531 |
+
|
1532 |
+
model._convert_deprecated_attention_blocks(state_dict)
|
1533 |
+
|
1534 |
+
conv_in_weight = state_dict['conv_in.weight']
|
1535 |
+
conv_out_weight = state_dict['conv_out.weight']
|
1536 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model_2d(
|
1537 |
+
model,
|
1538 |
+
state_dict,
|
1539 |
+
model_file,
|
1540 |
+
pretrained_model_name_or_path,
|
1541 |
+
ignore_mismatched_sizes=True,
|
1542 |
+
)
|
1543 |
+
if any([key == 'conv_in.weight' for key, _, _ in mismatched_keys]):
|
1544 |
+
# initialize from the original SD structure
|
1545 |
+
model.conv_in.weight.data[:,:4] = conv_in_weight
|
1546 |
+
|
1547 |
+
# whether to place all zero to new layers?
|
1548 |
+
if zero_init_conv_in:
|
1549 |
+
model.conv_in.weight.data[:,4:] = 0.
|
1550 |
+
|
1551 |
+
if any([key == 'conv_out.weight' for key, _, _ in mismatched_keys]):
|
1552 |
+
# initialize from the original SD structure
|
1553 |
+
model.conv_out.weight.data[:,:4] = conv_out_weight
|
1554 |
+
if out_channels == 8: # copy for the last 4 channels
|
1555 |
+
model.conv_out.weight.data[:, 4:] = conv_out_weight
|
1556 |
+
|
1557 |
+
if zero_init_camera_projection: # true
|
1558 |
+
params = [p for p in model.camera_embedding.parameters()]
|
1559 |
+
torch.nn.init.zeros_(params[-1].data)
|
1560 |
+
|
1561 |
+
loading_info = {
|
1562 |
+
"missing_keys": missing_keys,
|
1563 |
+
"unexpected_keys": unexpected_keys,
|
1564 |
+
"mismatched_keys": mismatched_keys,
|
1565 |
+
"error_msgs": error_msgs,
|
1566 |
+
}
|
1567 |
+
|
1568 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
1569 |
+
raise ValueError(
|
1570 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
1571 |
+
)
|
1572 |
+
elif torch_dtype is not None:
|
1573 |
+
model = model.to(torch_dtype)
|
1574 |
+
|
1575 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
1576 |
+
|
1577 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
1578 |
+
model.eval()
|
1579 |
+
if output_loading_info:
|
1580 |
+
return model, loading_info
|
1581 |
+
return model
|
1582 |
+
|
1583 |
+
@classmethod
|
1584 |
+
def _load_pretrained_model_2d(
|
1585 |
+
cls,
|
1586 |
+
model,
|
1587 |
+
state_dict,
|
1588 |
+
resolved_archive_file,
|
1589 |
+
pretrained_model_name_or_path,
|
1590 |
+
ignore_mismatched_sizes=False,
|
1591 |
+
):
|
1592 |
+
# Retrieve missing & unexpected_keys
|
1593 |
+
model_state_dict = model.state_dict()
|
1594 |
+
loaded_keys = list(state_dict.keys())
|
1595 |
+
|
1596 |
+
expected_keys = list(model_state_dict.keys())
|
1597 |
+
|
1598 |
+
original_loaded_keys = loaded_keys
|
1599 |
+
|
1600 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
1601 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
1602 |
+
|
1603 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
1604 |
+
model_to_load = model
|
1605 |
+
|
1606 |
+
def _find_mismatched_keys(
|
1607 |
+
state_dict,
|
1608 |
+
model_state_dict,
|
1609 |
+
loaded_keys,
|
1610 |
+
ignore_mismatched_sizes,
|
1611 |
+
):
|
1612 |
+
mismatched_keys = []
|
1613 |
+
if ignore_mismatched_sizes:
|
1614 |
+
for checkpoint_key in loaded_keys:
|
1615 |
+
model_key = checkpoint_key
|
1616 |
+
|
1617 |
+
if (
|
1618 |
+
model_key in model_state_dict
|
1619 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
1620 |
+
):
|
1621 |
+
mismatched_keys.append(
|
1622 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
1623 |
+
)
|
1624 |
+
del state_dict[checkpoint_key]
|
1625 |
+
return mismatched_keys
|
1626 |
+
|
1627 |
+
if state_dict is not None:
|
1628 |
+
# Whole checkpoint
|
1629 |
+
mismatched_keys = _find_mismatched_keys(
|
1630 |
+
state_dict,
|
1631 |
+
model_state_dict,
|
1632 |
+
original_loaded_keys,
|
1633 |
+
ignore_mismatched_sizes,
|
1634 |
+
)
|
1635 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
1636 |
+
|
1637 |
+
if len(error_msgs) > 0:
|
1638 |
+
error_msg = "\n\t".join(error_msgs)
|
1639 |
+
if "size mismatch" in error_msg:
|
1640 |
+
error_msg += (
|
1641 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
1642 |
+
)
|
1643 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
1644 |
+
|
1645 |
+
if len(unexpected_keys) > 0:
|
1646 |
+
logger.warning(
|
1647 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
1648 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
1649 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
1650 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
1651 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
1652 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
1653 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
1654 |
+
" BertForSequenceClassification model)."
|
1655 |
+
)
|
1656 |
+
else:
|
1657 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
1658 |
+
if len(missing_keys) > 0:
|
1659 |
+
logger.warning(
|
1660 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1661 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
1662 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
1663 |
+
)
|
1664 |
+
elif len(mismatched_keys) == 0:
|
1665 |
+
logger.info(
|
1666 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
1667 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
1668 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
1669 |
+
" without further training."
|
1670 |
+
)
|
1671 |
+
if len(mismatched_keys) > 0:
|
1672 |
+
mismatched_warning = "\n".join(
|
1673 |
+
[
|
1674 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
1675 |
+
for key, shape1, shape2 in mismatched_keys
|
1676 |
+
]
|
1677 |
+
)
|
1678 |
+
logger.warning(
|
1679 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
1680 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
1681 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
1682 |
+
" able to use it for predictions and inference."
|
1683 |
+
)
|
1684 |
+
|
1685 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
1686 |
+
|
mvdiffusion/pipelines/pipeline_mvdiffusion_unclip.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import warnings
|
3 |
+
from typing import Callable, List, Optional, Union, Dict, Any
|
4 |
+
import PIL
|
5 |
+
import torch
|
6 |
+
from packaging import version
|
7 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, CLIPFeatureExtractor, CLIPTokenizer, CLIPTextModel
|
8 |
+
from diffusers.utils.import_utils import is_accelerate_available
|
9 |
+
from diffusers.configuration_utils import FrozenDict
|
10 |
+
from diffusers.image_processor import VaeImageProcessor
|
11 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
13 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
14 |
+
from diffusers.utils import deprecate, logging
|
15 |
+
from diffusers.utils.torch_utils import randn_tensor
|
16 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
17 |
+
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
|
18 |
+
import os
|
19 |
+
import torchvision.transforms.functional as TF
|
20 |
+
from einops import rearrange
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
class StableUnCLIPImg2ImgPipeline(DiffusionPipeline):
|
24 |
+
"""
|
25 |
+
Pipeline for text-guided image to image generation using stable unCLIP.
|
26 |
+
|
27 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
28 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
29 |
+
|
30 |
+
Args:
|
31 |
+
feature_extractor ([`CLIPFeatureExtractor`]):
|
32 |
+
Feature extractor for image pre-processing before being encoded.
|
33 |
+
image_encoder ([`CLIPVisionModelWithProjection`]):
|
34 |
+
CLIP vision model for encoding images.
|
35 |
+
image_normalizer ([`StableUnCLIPImageNormalizer`]):
|
36 |
+
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image
|
37 |
+
embeddings after the noise has been applied.
|
38 |
+
image_noising_scheduler ([`KarrasDiffusionSchedulers`]):
|
39 |
+
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined
|
40 |
+
by `noise_level` in `StableUnCLIPPipeline.__call__`.
|
41 |
+
tokenizer (`CLIPTokenizer`):
|
42 |
+
Tokenizer of class
|
43 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
44 |
+
text_encoder ([`CLIPTextModel`]):
|
45 |
+
Frozen text-encoder.
|
46 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
47 |
+
scheduler ([`KarrasDiffusionSchedulers`]):
|
48 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
|
49 |
+
vae ([`AutoencoderKL`]):
|
50 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
51 |
+
"""
|
52 |
+
# image encoding components
|
53 |
+
feature_extractor: CLIPFeatureExtractor
|
54 |
+
image_encoder: CLIPVisionModelWithProjection
|
55 |
+
# image noising components
|
56 |
+
image_normalizer: StableUnCLIPImageNormalizer
|
57 |
+
image_noising_scheduler: KarrasDiffusionSchedulers
|
58 |
+
# regular denoising components
|
59 |
+
tokenizer: CLIPTokenizer
|
60 |
+
text_encoder: CLIPTextModel
|
61 |
+
unet: UNet2DConditionModel
|
62 |
+
scheduler: KarrasDiffusionSchedulers
|
63 |
+
vae: AutoencoderKL
|
64 |
+
|
65 |
+
def __init__(
|
66 |
+
self,
|
67 |
+
# image encoding components
|
68 |
+
feature_extractor: CLIPFeatureExtractor,
|
69 |
+
image_encoder: CLIPVisionModelWithProjection,
|
70 |
+
# image noising components
|
71 |
+
image_normalizer: StableUnCLIPImageNormalizer,
|
72 |
+
image_noising_scheduler: KarrasDiffusionSchedulers,
|
73 |
+
# regular denoising components
|
74 |
+
tokenizer: CLIPTokenizer,
|
75 |
+
text_encoder: CLIPTextModel,
|
76 |
+
unet: UNet2DConditionModel,
|
77 |
+
scheduler: KarrasDiffusionSchedulers,
|
78 |
+
# vae
|
79 |
+
vae: AutoencoderKL,
|
80 |
+
num_views: int = 4,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.register_modules(
|
85 |
+
feature_extractor=feature_extractor,
|
86 |
+
image_encoder=image_encoder,
|
87 |
+
image_normalizer=image_normalizer,
|
88 |
+
image_noising_scheduler=image_noising_scheduler,
|
89 |
+
tokenizer=tokenizer,
|
90 |
+
text_encoder=text_encoder,
|
91 |
+
unet=unet,
|
92 |
+
scheduler=scheduler,
|
93 |
+
vae=vae,
|
94 |
+
)
|
95 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
96 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
97 |
+
self.num_views: int = num_views
|
98 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
|
99 |
+
def enable_vae_slicing(self):
|
100 |
+
r"""
|
101 |
+
Enable sliced VAE decoding.
|
102 |
+
|
103 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
104 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
105 |
+
"""
|
106 |
+
self.vae.enable_slicing()
|
107 |
+
|
108 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
|
109 |
+
def disable_vae_slicing(self):
|
110 |
+
r"""
|
111 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
112 |
+
computing decoding in one step.
|
113 |
+
"""
|
114 |
+
self.vae.disable_slicing()
|
115 |
+
|
116 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
117 |
+
r"""
|
118 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's
|
119 |
+
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only
|
120 |
+
when their specific submodule has its `forward` method called.
|
121 |
+
"""
|
122 |
+
if is_accelerate_available():
|
123 |
+
from accelerate import cpu_offload
|
124 |
+
else:
|
125 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
126 |
+
|
127 |
+
device = torch.device(f"cuda:{gpu_id}")
|
128 |
+
|
129 |
+
# TODO: self.image_normalizer.{scale,unscale} are not covered by the offload hooks, so they fails if added to the list
|
130 |
+
models = [
|
131 |
+
self.image_encoder,
|
132 |
+
self.text_encoder,
|
133 |
+
self.unet,
|
134 |
+
self.vae,
|
135 |
+
]
|
136 |
+
for cpu_offloaded_model in models:
|
137 |
+
if cpu_offloaded_model is not None:
|
138 |
+
cpu_offload(cpu_offloaded_model, device)
|
139 |
+
|
140 |
+
@property
|
141 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
142 |
+
def _execution_device(self):
|
143 |
+
r"""
|
144 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
145 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
146 |
+
hooks.
|
147 |
+
"""
|
148 |
+
if not hasattr(self.unet, "_hf_hook"):
|
149 |
+
return self.device
|
150 |
+
for module in self.unet.modules():
|
151 |
+
if (
|
152 |
+
hasattr(module, "_hf_hook")
|
153 |
+
and hasattr(module._hf_hook, "execution_device")
|
154 |
+
and module._hf_hook.execution_device is not None
|
155 |
+
):
|
156 |
+
return torch.device(module._hf_hook.execution_device)
|
157 |
+
return self.device
|
158 |
+
|
159 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
|
160 |
+
def _encode_prompt(
|
161 |
+
self,
|
162 |
+
prompt,
|
163 |
+
device,
|
164 |
+
num_images_per_prompt,
|
165 |
+
do_classifier_free_guidance,
|
166 |
+
negative_prompt=None,
|
167 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
168 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
169 |
+
lora_scale: Optional[float] = None,
|
170 |
+
):
|
171 |
+
r"""
|
172 |
+
Encodes the prompt into text encoder hidden states.
|
173 |
+
|
174 |
+
Args:
|
175 |
+
prompt (`str` or `List[str]`, *optional*):
|
176 |
+
prompt to be encoded
|
177 |
+
device: (`torch.device`):
|
178 |
+
torch device
|
179 |
+
num_images_per_prompt (`int`):
|
180 |
+
number of images that should be generated per prompt
|
181 |
+
do_classifier_free_guidance (`bool`):
|
182 |
+
whether to use classifier free guidance or not
|
183 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
184 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
185 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
186 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
187 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
188 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
189 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
190 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
191 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
192 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
193 |
+
argument.
|
194 |
+
"""
|
195 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
196 |
+
|
197 |
+
if do_classifier_free_guidance:
|
198 |
+
# For classifier free guidance, we need to do two forward passes.
|
199 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
200 |
+
# to avoid doing two forward passes
|
201 |
+
normal_prompt_embeds, color_prompt_embeds = torch.chunk(prompt_embeds, 2, dim=0)
|
202 |
+
|
203 |
+
prompt_embeds = torch.cat([normal_prompt_embeds, normal_prompt_embeds, color_prompt_embeds, color_prompt_embeds], 0)
|
204 |
+
|
205 |
+
return prompt_embeds
|
206 |
+
|
207 |
+
def _encode_image(
|
208 |
+
self,
|
209 |
+
image_pil,
|
210 |
+
device,
|
211 |
+
num_images_per_prompt,
|
212 |
+
do_classifier_free_guidance,
|
213 |
+
noise_level: int=0,
|
214 |
+
generator: Optional[torch.Generator] = None
|
215 |
+
):
|
216 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
217 |
+
# ______________________________clip image embedding______________________________
|
218 |
+
image = self.feature_extractor(images=image_pil, return_tensors="pt").pixel_values
|
219 |
+
image = image.to(device=device, dtype=dtype)
|
220 |
+
image_embeds = self.image_encoder(image).image_embeds
|
221 |
+
|
222 |
+
image_embeds = self.noise_image_embeddings(
|
223 |
+
image_embeds=image_embeds,
|
224 |
+
noise_level=noise_level,
|
225 |
+
generator=generator,
|
226 |
+
)
|
227 |
+
# duplicate image embeddings for each generation per prompt, using mps friendly method
|
228 |
+
# image_embeds = image_embeds.unsqueeze(1)
|
229 |
+
# note: the condition input is same
|
230 |
+
image_embeds = image_embeds.repeat(num_images_per_prompt, 1)
|
231 |
+
|
232 |
+
if do_classifier_free_guidance:
|
233 |
+
normal_image_embeds, color_image_embeds = torch.chunk(image_embeds, 2, dim=0)
|
234 |
+
negative_prompt_embeds = torch.zeros_like(normal_image_embeds)
|
235 |
+
|
236 |
+
# For classifier free guidance, we need to do two forward passes.
|
237 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
238 |
+
# to avoid doing two forward passes
|
239 |
+
image_embeds = torch.cat([negative_prompt_embeds, normal_image_embeds, negative_prompt_embeds, color_image_embeds], 0)
|
240 |
+
|
241 |
+
# _____________________________vae input latents__________________________________________________
|
242 |
+
image_pt = torch.stack([TF.to_tensor(img) for img in image_pil], dim=0).to(device)
|
243 |
+
image_pt = image_pt * 2.0 - 1.0
|
244 |
+
image_latents = self.vae.encode(image_pt).latent_dist.mode() * self.vae.config.scaling_factor
|
245 |
+
# Note: repeat differently from official pipelines
|
246 |
+
image_latents = image_latents.repeat(num_images_per_prompt, 1, 1, 1)
|
247 |
+
|
248 |
+
if do_classifier_free_guidance:
|
249 |
+
normal_image_latents, color_image_latents = torch.chunk(image_latents, 2, dim=0)
|
250 |
+
image_latents = torch.cat([torch.zeros_like(normal_image_latents), normal_image_latents,
|
251 |
+
torch.zeros_like(color_image_latents), color_image_latents], 0)
|
252 |
+
|
253 |
+
return image_embeds, image_latents
|
254 |
+
|
255 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
256 |
+
def decode_latents(self, latents):
|
257 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
258 |
+
image = self.vae.decode(latents).sample
|
259 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
260 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
261 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
262 |
+
return image
|
263 |
+
|
264 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
265 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
266 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
267 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
268 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
269 |
+
# and should be between [0, 1]
|
270 |
+
|
271 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
272 |
+
extra_step_kwargs = {}
|
273 |
+
if accepts_eta:
|
274 |
+
extra_step_kwargs["eta"] = eta
|
275 |
+
|
276 |
+
# check if the scheduler accepts generator
|
277 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
278 |
+
if accepts_generator:
|
279 |
+
extra_step_kwargs["generator"] = generator
|
280 |
+
return extra_step_kwargs
|
281 |
+
|
282 |
+
def check_inputs(
|
283 |
+
self,
|
284 |
+
prompt,
|
285 |
+
image,
|
286 |
+
height,
|
287 |
+
width,
|
288 |
+
callback_steps,
|
289 |
+
noise_level,
|
290 |
+
):
|
291 |
+
if height % 8 != 0 or width % 8 != 0:
|
292 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
293 |
+
|
294 |
+
if (callback_steps is None) or (
|
295 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
296 |
+
):
|
297 |
+
raise ValueError(
|
298 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
299 |
+
f" {type(callback_steps)}."
|
300 |
+
)
|
301 |
+
|
302 |
+
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
303 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
304 |
+
|
305 |
+
|
306 |
+
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps:
|
307 |
+
raise ValueError(
|
308 |
+
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive."
|
309 |
+
)
|
310 |
+
|
311 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
312 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
313 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
314 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
315 |
+
raise ValueError(
|
316 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
317 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
318 |
+
)
|
319 |
+
|
320 |
+
if latents is None:
|
321 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
322 |
+
else:
|
323 |
+
latents = latents.to(device)
|
324 |
+
|
325 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
326 |
+
latents = latents * self.scheduler.init_noise_sigma
|
327 |
+
return latents
|
328 |
+
|
329 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_unclip.StableUnCLIPPipeline.noise_image_embeddings
|
330 |
+
def noise_image_embeddings(
|
331 |
+
self,
|
332 |
+
image_embeds: torch.Tensor,
|
333 |
+
noise_level: int,
|
334 |
+
noise: Optional[torch.FloatTensor] = None,
|
335 |
+
generator: Optional[torch.Generator] = None,
|
336 |
+
):
|
337 |
+
"""
|
338 |
+
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher
|
339 |
+
`noise_level` increases the variance in the final un-noised images.
|
340 |
+
|
341 |
+
The noise is applied in two ways
|
342 |
+
1. A noise schedule is applied directly to the embeddings
|
343 |
+
2. A vector of sinusoidal time embeddings are appended to the output.
|
344 |
+
|
345 |
+
In both cases, the amount of noise is controlled by the same `noise_level`.
|
346 |
+
|
347 |
+
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied.
|
348 |
+
"""
|
349 |
+
if noise is None:
|
350 |
+
noise = randn_tensor(
|
351 |
+
image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype
|
352 |
+
)
|
353 |
+
|
354 |
+
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device)
|
355 |
+
|
356 |
+
image_embeds = self.image_normalizer.scale(image_embeds)
|
357 |
+
|
358 |
+
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise)
|
359 |
+
|
360 |
+
image_embeds = self.image_normalizer.unscale(image_embeds)
|
361 |
+
|
362 |
+
noise_level = get_timestep_embedding(
|
363 |
+
timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0
|
364 |
+
)
|
365 |
+
|
366 |
+
# `get_timestep_embeddings` does not contain any weights and will always return f32 tensors,
|
367 |
+
# but we might actually be running in fp16. so we need to cast here.
|
368 |
+
# there might be better ways to encapsulate this.
|
369 |
+
noise_level = noise_level.to(image_embeds.dtype)
|
370 |
+
|
371 |
+
image_embeds = torch.cat((image_embeds, noise_level), 1)
|
372 |
+
|
373 |
+
return image_embeds
|
374 |
+
|
375 |
+
@torch.no_grad()
|
376 |
+
# @replace_example_docstring(EXAMPLE_DOC_STRING)
|
377 |
+
def __call__(
|
378 |
+
self,
|
379 |
+
image: Union[torch.FloatTensor, PIL.Image.Image],
|
380 |
+
prompt: Union[str, List[str]],
|
381 |
+
prompt_embeds: torch.FloatTensor = None,
|
382 |
+
dino_feature: torch.FloatTensor = None,
|
383 |
+
height: Optional[int] = None,
|
384 |
+
width: Optional[int] = None,
|
385 |
+
num_inference_steps: int = 20,
|
386 |
+
guidance_scale: float = 10,
|
387 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
388 |
+
num_images_per_prompt: Optional[int] = 1,
|
389 |
+
eta: float = 0.0,
|
390 |
+
generator: Optional[torch.Generator] = None,
|
391 |
+
latents: Optional[torch.FloatTensor] = None,
|
392 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
393 |
+
output_type: Optional[str] = "pil",
|
394 |
+
return_dict: bool = True,
|
395 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
396 |
+
callback_steps: int = 1,
|
397 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
398 |
+
noise_level: int = 0,
|
399 |
+
image_embeds: Optional[torch.FloatTensor] = None,
|
400 |
+
return_elevation_focal: Optional[bool] = False,
|
401 |
+
gt_img_in: Optional[torch.FloatTensor] = None,
|
402 |
+
):
|
403 |
+
r"""
|
404 |
+
Function invoked when calling the pipeline for generation.
|
405 |
+
|
406 |
+
Args:
|
407 |
+
prompt (`str` or `List[str]`, *optional*):
|
408 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
409 |
+
instead.
|
410 |
+
image (`torch.FloatTensor` or `PIL.Image.Image`):
|
411 |
+
`Image`, or tensor representing an image batch. The image will be encoded to its CLIP embedding which
|
412 |
+
the unet will be conditioned on. Note that the image is _not_ encoded by the vae and then used as the
|
413 |
+
latents in the denoising process such as in the standard stable diffusion text guided image variation
|
414 |
+
process.
|
415 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
416 |
+
The height in pixels of the generated image.
|
417 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
418 |
+
The width in pixels of the generated image.
|
419 |
+
num_inference_steps (`int`, *optional*, defaults to 20):
|
420 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
421 |
+
expense of slower inference.
|
422 |
+
guidance_scale (`float`, *optional*, defaults to 10.0):
|
423 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
424 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
425 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
426 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
427 |
+
usually at the expense of lower image quality.
|
428 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
429 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
430 |
+
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
431 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
432 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
433 |
+
The number of images to generate per prompt.
|
434 |
+
eta (`float`, *optional*, defaults to 0.0):
|
435 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
436 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
437 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
438 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
439 |
+
to make generation deterministic.
|
440 |
+
latents (`torch.FloatTensor`, *optional*):
|
441 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
442 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
443 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
444 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
445 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
446 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
447 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
448 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
449 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
450 |
+
argument.
|
451 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
452 |
+
The output format of the generate image. Choose between
|
453 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
454 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
455 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
456 |
+
plain tuple.
|
457 |
+
callback (`Callable`, *optional*):
|
458 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
459 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
460 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
461 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
462 |
+
called at every step.
|
463 |
+
cross_attention_kwargs (`dict`, *optional*):
|
464 |
+
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under
|
465 |
+
`self.processor` in
|
466 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
467 |
+
noise_level (`int`, *optional*, defaults to `0`):
|
468 |
+
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in
|
469 |
+
the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details.
|
470 |
+
image_embeds (`torch.FloatTensor`, *optional*):
|
471 |
+
Pre-generated CLIP embeddings to condition the unet on. Note that these are not latents to be used in
|
472 |
+
the denoising process. If you want to provide pre-generated latents, pass them to `__call__` as
|
473 |
+
`latents`.
|
474 |
+
|
475 |
+
Examples:
|
476 |
+
|
477 |
+
Returns:
|
478 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is
|
479 |
+
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images.
|
480 |
+
"""
|
481 |
+
# 0. Default height and width to unet
|
482 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
483 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
484 |
+
|
485 |
+
# 1. Check inputs. Raise error if not correct
|
486 |
+
self.check_inputs(
|
487 |
+
prompt=prompt,
|
488 |
+
image=image,
|
489 |
+
height=height,
|
490 |
+
width=width,
|
491 |
+
callback_steps=callback_steps,
|
492 |
+
noise_level=noise_level
|
493 |
+
)
|
494 |
+
|
495 |
+
# 2. Define call parameters
|
496 |
+
if isinstance(image, list):
|
497 |
+
batch_size = len(image)
|
498 |
+
elif isinstance(image, torch.Tensor):
|
499 |
+
batch_size = image.shape[0]
|
500 |
+
assert batch_size >= self.num_views and batch_size % self.num_views == 0
|
501 |
+
elif isinstance(image, PIL.Image.Image):
|
502 |
+
image = [image]*self.num_views*2
|
503 |
+
batch_size = self.num_views*2
|
504 |
+
|
505 |
+
if isinstance(prompt, str):
|
506 |
+
prompt = [prompt] * self.num_views * 2
|
507 |
+
|
508 |
+
device = self._execution_device
|
509 |
+
|
510 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
511 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
512 |
+
# corresponds to doing no classifier free guidance.
|
513 |
+
do_classifier_free_guidance = guidance_scale != 1.0
|
514 |
+
|
515 |
+
# 3. Encode input prompt
|
516 |
+
text_encoder_lora_scale = (
|
517 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
518 |
+
)
|
519 |
+
prompt_embeds = self._encode_prompt(
|
520 |
+
prompt=prompt,
|
521 |
+
device=device,
|
522 |
+
num_images_per_prompt=num_images_per_prompt,
|
523 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
524 |
+
negative_prompt=negative_prompt,
|
525 |
+
prompt_embeds=prompt_embeds,
|
526 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
527 |
+
lora_scale=text_encoder_lora_scale,
|
528 |
+
)
|
529 |
+
|
530 |
+
|
531 |
+
# 4. Encoder input image
|
532 |
+
if isinstance(image, list):
|
533 |
+
image_pil = image
|
534 |
+
elif isinstance(image, torch.Tensor):
|
535 |
+
image_pil = [TF.to_pil_image(image[i]) for i in range(image.shape[0])]
|
536 |
+
noise_level = torch.tensor([noise_level], device=device)
|
537 |
+
image_embeds, image_latents = self._encode_image(
|
538 |
+
image_pil=image_pil,
|
539 |
+
device=device,
|
540 |
+
num_images_per_prompt=num_images_per_prompt,
|
541 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
542 |
+
noise_level=noise_level,
|
543 |
+
generator=generator,
|
544 |
+
)
|
545 |
+
|
546 |
+
# 5. Prepare timesteps
|
547 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
548 |
+
timesteps = self.scheduler.timesteps
|
549 |
+
|
550 |
+
# 6. Prepare latent variables
|
551 |
+
num_channels_latents = self.unet.config.out_channels
|
552 |
+
if gt_img_in is not None:
|
553 |
+
latents = gt_img_in * self.scheduler.init_noise_sigma
|
554 |
+
else:
|
555 |
+
latents = self.prepare_latents(
|
556 |
+
batch_size=batch_size,
|
557 |
+
num_channels_latents=num_channels_latents,
|
558 |
+
height=height,
|
559 |
+
width=width,
|
560 |
+
dtype=prompt_embeds.dtype,
|
561 |
+
device=device,
|
562 |
+
generator=generator,
|
563 |
+
latents=latents,
|
564 |
+
)
|
565 |
+
|
566 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
567 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
568 |
+
|
569 |
+
eles, focals = [], []
|
570 |
+
# 8. Denoising loop
|
571 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
572 |
+
if do_classifier_free_guidance:
|
573 |
+
normal_latents, color_latents = torch.chunk(latents, 2, dim=0)
|
574 |
+
latent_model_input = torch.cat([normal_latents, normal_latents, color_latents, color_latents], 0)
|
575 |
+
else:
|
576 |
+
latent_model_input = latents
|
577 |
+
latent_model_input = torch.cat([
|
578 |
+
latent_model_input, image_latents
|
579 |
+
], dim=1)
|
580 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
581 |
+
|
582 |
+
# predict the noise residual
|
583 |
+
unet_out = self.unet(
|
584 |
+
latent_model_input,
|
585 |
+
t,
|
586 |
+
encoder_hidden_states=prompt_embeds,
|
587 |
+
dino_feature=dino_feature,
|
588 |
+
class_labels=image_embeds,
|
589 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
590 |
+
return_dict=False)
|
591 |
+
|
592 |
+
noise_pred = unet_out[0]
|
593 |
+
if return_elevation_focal:
|
594 |
+
uncond_pose, pose = torch.chunk(unet_out[1], 2, 0)
|
595 |
+
pose = uncond_pose + guidance_scale * (pose - uncond_pose)
|
596 |
+
ele = pose[:, 0].detach().cpu().numpy() # b
|
597 |
+
eles.append(ele)
|
598 |
+
focal = pose[:, 1].detach().cpu().numpy()
|
599 |
+
focals.append(focal)
|
600 |
+
|
601 |
+
# perform guidance
|
602 |
+
if do_classifier_free_guidance:
|
603 |
+
normal_noise_pred_uncond, normal_noise_pred_text, color_noise_pred_uncond, color_noise_pred_text = torch.chunk(noise_pred, 4, dim=0)
|
604 |
+
|
605 |
+
noise_pred_uncond, noise_pred_text = torch.cat([normal_noise_pred_uncond, color_noise_pred_uncond], 0), torch.cat([normal_noise_pred_text, color_noise_pred_text], 0)
|
606 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
607 |
+
|
608 |
+
# compute the previous noisy sample x_t -> x_t-1
|
609 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
610 |
+
|
611 |
+
if callback is not None and i % callback_steps == 0:
|
612 |
+
callback(i, t, latents)
|
613 |
+
|
614 |
+
# 9. Post-processing
|
615 |
+
if not output_type == "latent":
|
616 |
+
if num_channels_latents == 8:
|
617 |
+
latents = torch.cat([latents[:, :4], latents[:, 4:]], dim=0)
|
618 |
+
with torch.no_grad():
|
619 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
620 |
+
else:
|
621 |
+
image = latents
|
622 |
+
|
623 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
624 |
+
|
625 |
+
# Offload last model to CPU
|
626 |
+
# if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
627 |
+
# self.final_offload_hook.offload()
|
628 |
+
if not return_dict:
|
629 |
+
return (image, )
|
630 |
+
if return_elevation_focal:
|
631 |
+
return ImagePipelineOutput(images=image), eles, focals
|
632 |
+
else:
|
633 |
+
return ImagePipelineOutput(images=image)
|
utils/misc.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from omegaconf import OmegaConf
|
3 |
+
from packaging import version
|
4 |
+
|
5 |
+
|
6 |
+
# ============ Register OmegaConf Recolvers ============= #
|
7 |
+
OmegaConf.register_new_resolver('calc_exp_lr_decay_rate', lambda factor, n: factor**(1./n))
|
8 |
+
OmegaConf.register_new_resolver('add', lambda a, b: a + b)
|
9 |
+
OmegaConf.register_new_resolver('sub', lambda a, b: a - b)
|
10 |
+
OmegaConf.register_new_resolver('mul', lambda a, b: a * b)
|
11 |
+
OmegaConf.register_new_resolver('div', lambda a, b: a / b)
|
12 |
+
OmegaConf.register_new_resolver('idiv', lambda a, b: a // b)
|
13 |
+
OmegaConf.register_new_resolver('basename', lambda p: os.path.basename(p))
|
14 |
+
# ======================================================= #
|
15 |
+
|
16 |
+
|
17 |
+
def prompt(question):
|
18 |
+
inp = input(f"{question} (y/n)").lower().strip()
|
19 |
+
if inp and inp == 'y':
|
20 |
+
return True
|
21 |
+
if inp and inp == 'n':
|
22 |
+
return False
|
23 |
+
return prompt(question)
|
24 |
+
|
25 |
+
|
26 |
+
def load_config(*yaml_files, cli_args=[]):
|
27 |
+
yaml_confs = [OmegaConf.load(f) for f in yaml_files]
|
28 |
+
cli_conf = OmegaConf.from_cli(cli_args)
|
29 |
+
conf = OmegaConf.merge(*yaml_confs, cli_conf)
|
30 |
+
OmegaConf.resolve(conf)
|
31 |
+
return conf
|
32 |
+
|
33 |
+
|
34 |
+
def config_to_primitive(config, resolve=True):
|
35 |
+
return OmegaConf.to_container(config, resolve=resolve)
|
36 |
+
|
37 |
+
|
38 |
+
def dump_config(path, config):
|
39 |
+
with open(path, 'w') as fp:
|
40 |
+
OmegaConf.save(config=config, f=fp)
|
41 |
+
|
42 |
+
def get_rank():
|
43 |
+
# SLURM_PROCID can be set even if SLURM is not managing the multiprocessing,
|
44 |
+
# therefore LOCAL_RANK needs to be checked first
|
45 |
+
rank_keys = ("RANK", "LOCAL_RANK", "SLURM_PROCID", "JSM_NAMESPACE_RANK")
|
46 |
+
for key in rank_keys:
|
47 |
+
rank = os.environ.get(key)
|
48 |
+
if rank is not None:
|
49 |
+
return int(rank)
|
50 |
+
return 0
|
51 |
+
|
52 |
+
|
53 |
+
def parse_version(ver):
|
54 |
+
return version.parse(ver)
|
utils/utils.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torchvision.utils import make_grid
|
2 |
+
from PIL import Image, ImageDraw, ImageFont
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
def make_grid_(imgs, save_file, nrow=10, pad_value=1):
|
6 |
+
if isinstance(imgs, list):
|
7 |
+
if isinstance(imgs[0], Image.Image):
|
8 |
+
imgs = [torch.from_numpy(np.array(img)/255.) for img in imgs]
|
9 |
+
elif isinstance(imgs[0], np.ndarray):
|
10 |
+
imgs = [torch.from_numpy(img/255.) for img in imgs]
|
11 |
+
imgs = torch.stack(imgs, 0).permute(0, 3, 1, 2)
|
12 |
+
if isinstance(imgs, np.ndarray):
|
13 |
+
imgs = torch.from_numpy(imgs)
|
14 |
+
|
15 |
+
img_grid = make_grid(imgs, nrow=nrow, padding=2, pad_value=pad_value)
|
16 |
+
img_grid = img_grid.permute(1, 2, 0).numpy()
|
17 |
+
img_grid = (img_grid * 255).astype(np.uint8)
|
18 |
+
img_grid = Image.fromarray(img_grid)
|
19 |
+
img_grid.save(save_file)
|
20 |
+
|
21 |
+
def draw_caption(img, text, pos, size=100, color=(128, 128, 128)):
|
22 |
+
draw = ImageDraw.Draw(img)
|
23 |
+
# font = ImageFont.truetype(size= size)
|
24 |
+
font = ImageFont.load_default()
|
25 |
+
font = font.font_variant(size=size)
|
26 |
+
draw.text(pos, text, color, font=font)
|
27 |
+
return img
|