import numpy as np from lib.config import cfg from skimage.measure import compare_ssim import os import cv2 import imageio class Evaluator: def __init__(self): self.mse = [] self.psnr = [] self.ssim = [] def psnr_metric(self, img_pred, img_gt): mse = np.mean((img_pred - img_gt)**2) psnr = -10 * np.log(mse) / np.log(10) return psnr def ssim_metric(self, rgb_pred, rgb_gt, batch): mask_at_box = batch['mask_at_box'][0].detach().cpu().numpy() H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio) mask_at_box = mask_at_box.reshape(H, W) # convert the pixels into an image img_pred = np.zeros((H, W, 3)) img_pred[mask_at_box] = rgb_pred img_gt = np.zeros((H, W, 3)) img_gt[mask_at_box] = rgb_gt # crop the object region x, y, w, h = cv2.boundingRect(mask_at_box.astype(np.uint8)) img_pred = img_pred[y:y + h, x:x + w] img_gt = img_gt[y:y + h, x:x + w] # compute the ssim ssim = compare_ssim(img_pred, img_gt, multichannel=True) return ssim def evaluate(self, batch): if cfg.human in [302, 313, 315]: i = batch['i'].item() + 1 else: i = batch['i'].item() i = i + cfg.begin_i cam_ind = batch['cam_ind'].item() # obtain the image path result_dir = 'data/result/neural_volumes/{}_nv'.format(cfg.human) frame_dir = os.path.join(result_dir, 'frame_{}'.format(i)) gt_img_path = os.path.join(frame_dir, 'gt_{}.jpg'.format(cam_ind + 1)) pred_img_path = os.path.join(frame_dir, 'pred_{}.jpg'.format(cam_ind + 1)) mask_at_box = batch['mask_at_box'][0].detach().cpu().numpy() H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio) mask_at_box = mask_at_box.reshape(H, W) # convert the pixels into an image rgb_gt = batch['rgb'][0].detach().cpu().numpy() img_gt = np.zeros((H, W, 3)) img_gt[mask_at_box] = rgb_gt # gt_img_path = gt_img_path.replace('neural_volumes', 'gt') # os.system('mkdir -p {}'.format(os.path.dirname(gt_img_path))) # img_gt = img_gt[..., [2, 1, 0]] * 255 # cv2.imwrite(gt_img_path, img_gt) img_pred = imageio.imread(pred_img_path).astype(np.float32) / 255. img_pred[mask_at_box != 1] = 0 rgb_pred = img_pred[mask_at_box] # import matplotlib.pyplot as plt # _, (ax1, ax2) = plt.subplots(1, 2) # ax1.imshow(img_gt) # ax2.imshow(img_pred) # plt.show() # return mse = np.mean((rgb_pred - rgb_gt)**2) self.mse.append(mse) psnr = self.psnr_metric(rgb_pred, rgb_gt) self.psnr.append(psnr) ssim = self.ssim_metric(rgb_pred, rgb_gt, batch) self.ssim.append(ssim) def summarize(self): result_path = os.path.join(cfg.result_dir, 'metrics.npy') os.system('mkdir -p {}'.format(os.path.dirname(result_path))) metrics = {'mse': self.mse, 'psnr': self.psnr, 'ssim': self.ssim} np.save(result_path, self.mse) print('mse: {}'.format(np.mean(self.mse))) print('psnr: {}'.format(np.mean(self.psnr))) print('ssim: {}'.format(np.mean(self.ssim))) self.mse = [] self.psnr = [] self.ssim = []