Spaces:
Runtime error
Runtime error
import os | |
from glob import glob | |
import torch | |
import torchaudio | |
import numpy as np | |
from scipy.io.wavfile import read | |
from utils.stft import STFT | |
def load_wav_to_torch(full_path): | |
sampling_rate, data = read(full_path) | |
if data.dtype == np.int32: | |
norm_fix = 2 ** 31 | |
elif data.dtype == np.int16: | |
norm_fix = 2 ** 15 | |
elif data.dtype == np.float16 or data.dtype == np.float32: | |
norm_fix = 1. | |
else: | |
raise NotImplemented(f"Provided data dtype not supported: {data.dtype}") | |
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate) | |
def load_audio(audiopath, sampling_rate): | |
if audiopath[-4:] == '.wav': | |
audio, lsr = load_wav_to_torch(audiopath) | |
elif audiopath[-4:] == '.mp3': | |
# https://github.com/neonbjb/pyfastmp3decoder - Definitely worth it. | |
from pyfastmp3decoder.mp3decoder import load_mp3 | |
audio, lsr = load_mp3(audiopath, sampling_rate) | |
audio = torch.FloatTensor(audio) | |
# Remove any channel data. | |
if len(audio.shape) > 1: | |
if audio.shape[0] < 5: | |
audio = audio[0] | |
else: | |
assert audio.shape[1] < 5 | |
audio = audio[:, 0] | |
if lsr != sampling_rate: | |
audio = torchaudio.functional.resample(audio, lsr, sampling_rate) | |
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk. | |
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds. | |
if torch.any(audio > 2) or not torch.any(audio < 0): | |
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}") | |
audio.clip_(-1, 1) | |
return audio.unsqueeze(0) | |
TACOTRON_MEL_MAX = 2.3143386840820312 | |
TACOTRON_MEL_MIN = -11.512925148010254 | |
def denormalize_tacotron_mel(norm_mel): | |
return ((norm_mel+1)/2)*(TACOTRON_MEL_MAX-TACOTRON_MEL_MIN)+TACOTRON_MEL_MIN | |
def normalize_tacotron_mel(mel): | |
return 2 * ((mel - TACOTRON_MEL_MIN) / (TACOTRON_MEL_MAX - TACOTRON_MEL_MIN)) - 1 | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
""" | |
PARAMS | |
------ | |
C: compression factor | |
""" | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression(x, C=1): | |
""" | |
PARAMS | |
------ | |
C: compression factor used to compress | |
""" | |
return torch.exp(x) / C | |
def get_voices(): | |
subs = os.listdir('voices') | |
voices = {} | |
for sub in subs: | |
subj = os.path.join('voices', sub) | |
if os.path.isdir(subj): | |
voices[sub] = list(glob(f'{subj}/*.wav')) + list(glob(f'{subj}/*.mp3')) | |
return voices | |
class TacotronSTFT(torch.nn.Module): | |
def __init__(self, filter_length=1024, hop_length=256, win_length=1024, | |
n_mel_channels=80, sampling_rate=22050, mel_fmin=0.0, | |
mel_fmax=8000.0): | |
super(TacotronSTFT, self).__init__() | |
self.n_mel_channels = n_mel_channels | |
self.sampling_rate = sampling_rate | |
self.stft_fn = STFT(filter_length, hop_length, win_length) | |
from librosa.filters import mel as librosa_mel_fn | |
mel_basis = librosa_mel_fn( | |
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax) | |
mel_basis = torch.from_numpy(mel_basis).float() | |
self.register_buffer('mel_basis', mel_basis) | |
def spectral_normalize(self, magnitudes): | |
output = dynamic_range_compression(magnitudes) | |
return output | |
def spectral_de_normalize(self, magnitudes): | |
output = dynamic_range_decompression(magnitudes) | |
return output | |
def mel_spectrogram(self, y): | |
"""Computes mel-spectrograms from a batch of waves | |
PARAMS | |
------ | |
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1] | |
RETURNS | |
------- | |
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T) | |
""" | |
assert(torch.min(y.data) >= -10) | |
assert(torch.max(y.data) <= 10) | |
y = torch.clip(y, min=-1, max=1) | |
magnitudes, phases = self.stft_fn.transform(y) | |
magnitudes = magnitudes.data | |
mel_output = torch.matmul(self.mel_basis, magnitudes) | |
mel_output = self.spectral_normalize(mel_output) | |
return mel_output | |
def wav_to_univnet_mel(wav, do_normalization=False): | |
stft = TacotronSTFT(1024, 256, 1024, 100, 24000, 0, 12000) | |
stft = stft.cuda() | |
mel = stft.mel_spectrogram(wav) | |
if do_normalization: | |
mel = normalize_tacotron_mel(mel) | |
return mel |