Spaces:
Sleeping
Sleeping
perlarsson
commited on
Upload folder using huggingface_hub
Browse files
ad.png
ADDED
app.py
CHANGED
@@ -1,7 +1,171 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
demo.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from roboflow import Roboflow
|
3 |
+
import os
|
4 |
+
import tempfile
|
5 |
+
from PIL import Image, ImageDraw, ImageFont
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Initialize Roboflow
|
10 |
+
rf = Roboflow(api_key="E5qhgf3ZimDoTx5OfgZ8")
|
11 |
+
project = rf.workspace().project("newhassae")
|
12 |
+
|
13 |
+
def get_model(version):
|
14 |
+
return project.version(version).model
|
15 |
+
|
16 |
+
def preprocess_image(img, version):
|
17 |
+
# Initial crop for all images
|
18 |
+
img = img.crop((682, 345, 682+2703, 345+1403))
|
19 |
+
|
20 |
+
# Model specific processing
|
21 |
+
if version == 1:
|
22 |
+
return img.resize((640, 640))
|
23 |
+
elif version == 2:
|
24 |
+
return img
|
25 |
+
elif version == 3:
|
26 |
+
width, height = img.size
|
27 |
+
left = (width - 640) // 2
|
28 |
+
top = (height - 640) // 2
|
29 |
+
right = left + 640
|
30 |
+
bottom = top + 640
|
31 |
+
return img.crop((left, top, right, bottom))
|
32 |
+
return img
|
33 |
+
|
34 |
+
def process_images(image_files, version):
|
35 |
+
model = get_model(version)
|
36 |
+
results = []
|
37 |
+
if not isinstance(image_files, list):
|
38 |
+
image_files = [image_files]
|
39 |
+
|
40 |
+
for image_file in image_files:
|
41 |
+
try:
|
42 |
+
with tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) as temp_file:
|
43 |
+
temp_file.write(image_file)
|
44 |
+
temp_path = temp_file.name
|
45 |
+
|
46 |
+
img = Image.open(temp_path)
|
47 |
+
processed_img = preprocess_image(img, version)
|
48 |
+
|
49 |
+
processed_temp = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False)
|
50 |
+
processed_img.save(processed_temp.name)
|
51 |
+
|
52 |
+
try:
|
53 |
+
prediction = model.predict(processed_temp.name).json()
|
54 |
+
predicted_class = prediction["predictions"][0]["predictions"][0]["class"]
|
55 |
+
confidence = f"{float(prediction['predictions'][0]['predictions'][0]['confidence']) * 100:.1f}%"
|
56 |
+
except Exception as e:
|
57 |
+
predicted_class = "Error"
|
58 |
+
confidence = "N/A"
|
59 |
+
|
60 |
+
if processed_img.mode != 'RGB':
|
61 |
+
processed_img = processed_img.convert('RGB')
|
62 |
+
|
63 |
+
labeled_img = add_label_to_image(processed_img, predicted_class, confidence)
|
64 |
+
|
65 |
+
top_result = {
|
66 |
+
"predicted_class": predicted_class,
|
67 |
+
"confidence": confidence
|
68 |
+
}
|
69 |
+
|
70 |
+
results.append((labeled_img, top_result))
|
71 |
+
|
72 |
+
except Exception as e:
|
73 |
+
gr.Warning(f"Error processing image: {str(e)}")
|
74 |
+
continue
|
75 |
+
finally:
|
76 |
+
if 'temp_path' in locals():
|
77 |
+
os.unlink(temp_path)
|
78 |
+
if 'processed_temp' in locals():
|
79 |
+
os.unlink(processed_temp.name)
|
80 |
+
|
81 |
+
return results if results else [(Image.new('RGB', (400, 400), 'grey'), {"predicted_class": "Error", "confidence": "N/A"})]
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def add_label_to_image(image, prediction, confidence):
|
86 |
+
# Convert PIL image to OpenCV format
|
87 |
+
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
88 |
+
|
89 |
+
# Image dimensions
|
90 |
+
img_height, img_width = img_cv.shape[:2]
|
91 |
+
padding = int(img_width * 0.02)
|
92 |
+
|
93 |
+
# Rectangle dimensions
|
94 |
+
rect_height = int(img_height * 0.15)
|
95 |
+
rect_width = img_width - (padding * 2)
|
96 |
+
|
97 |
+
# Draw red rectangle
|
98 |
+
cv2.rectangle(img_cv,
|
99 |
+
(padding, padding),
|
100 |
+
(padding + rect_width, padding + rect_height),
|
101 |
+
(0, 0, 255),
|
102 |
+
-1)
|
103 |
+
|
104 |
+
text = f"{prediction}: {confidence}"
|
105 |
+
|
106 |
+
# Text settings
|
107 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
108 |
+
font_scale = 3.0
|
109 |
+
thickness = 8
|
110 |
+
|
111 |
+
# Get text size and position
|
112 |
+
(text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
|
113 |
+
text_x = padding + (rect_width - text_width) // 2
|
114 |
+
text_y = padding + (rect_height + text_height) // 2
|
115 |
+
|
116 |
+
# Draw white text
|
117 |
+
cv2.putText(img_cv, text, (text_x, text_y), font, font_scale, (255, 255, 255), thickness)
|
118 |
+
|
119 |
+
# Convert back to PIL
|
120 |
+
img_pil = Image.fromarray(cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB))
|
121 |
+
return img_pil
|
122 |
+
|
123 |
+
def display_results(image_files, version):
|
124 |
+
results = process_images(image_files, version)
|
125 |
+
output_images = [res[0] for res in results]
|
126 |
+
predictions = [res[1] for res in results]
|
127 |
+
|
128 |
+
return output_images, predictions
|
129 |
+
# Create Gradio interface
|
130 |
+
with gr.Blocks() as demo:
|
131 |
+
gr.HTML("""
|
132 |
+
<div style="text-align: center; margin-bottom: 1rem">
|
133 |
+
<img src="https://haeab.se/wp-content/uploads/2023/12/ad.png" alt="Logo" style="height: 100px;">
|
134 |
+
</div>
|
135 |
+
""")
|
136 |
+
gr.Markdown("Hans Andersson Entrepenad")
|
137 |
+
|
138 |
+
with gr.Row():
|
139 |
+
with gr.Column():
|
140 |
+
model_version = gr.Slider(
|
141 |
+
minimum=1,
|
142 |
+
maximum=4,
|
143 |
+
step=1,
|
144 |
+
value=1,
|
145 |
+
label="Model Version",
|
146 |
+
interactive=True
|
147 |
+
)
|
148 |
+
image_input = gr.File(
|
149 |
+
label="Upload Image(s)",
|
150 |
+
file_count="multiple",
|
151 |
+
type="binary"
|
152 |
+
)
|
153 |
+
|
154 |
+
with gr.Column():
|
155 |
+
image_output = gr.Gallery(label="Processed Images")
|
156 |
+
text_output = gr.JSON(
|
157 |
+
label="Top Predictions",
|
158 |
+
height=400, # Increases height
|
159 |
+
container=True, # Adds a container around the JSON
|
160 |
+
show_label=True
|
161 |
+
)
|
162 |
+
|
163 |
+
submit_btn = gr.Button("Analyze Images")
|
164 |
+
submit_btn.click(
|
165 |
+
fn=display_results,
|
166 |
+
inputs=[image_input, model_version],
|
167 |
+
outputs=[image_output, text_output]
|
168 |
+
)
|
169 |
+
demo.launch(share=True, debug=True, show_error=True)
|
170 |
|
|
|
|
|
171 |
|
|
|
|