Spaces:
Runtime error
Runtime error
first commit
Browse files- LICENSE +21 -0
- app.py +80 -0
- requirements.txt +5 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 AI Anytime
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
app.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from urllib.parse import urlparse
|
3 |
+
from langchain.chat_models import ChatOpenAI
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import os
|
6 |
+
import openai
|
7 |
+
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain, BaseCombineDocumentsChain
|
8 |
+
from langchain.tools.base import BaseTool
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from pydantic import Field
|
11 |
+
import os, asyncio, trafilatura
|
12 |
+
from langchain.docstore.document import Document
|
13 |
+
import requests
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
|
18 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
19 |
+
|
20 |
+
@st.cache_resource
|
21 |
+
def get_url_name(url):
|
22 |
+
parsed_url = urlparse(url)
|
23 |
+
return parsed_url.netloc
|
24 |
+
|
25 |
+
def _get_text_splitter():
|
26 |
+
return RecursiveCharacterTextSplitter(
|
27 |
+
chunk_size = 500,
|
28 |
+
chunk_overlap = 20,
|
29 |
+
length_function = len,
|
30 |
+
)
|
31 |
+
|
32 |
+
class WebpageQATool(BaseTool):
|
33 |
+
name = "query_webpage"
|
34 |
+
description = "Browse a webpage and retrieve the information and answers relevant to the question. Please use bullet points to list the answers"
|
35 |
+
text_splitter: RecursiveCharacterTextSplitter = Field(default_factory=_get_text_splitter)
|
36 |
+
qa_chain: BaseCombineDocumentsChain
|
37 |
+
|
38 |
+
def _run(self, url: str, question: str) -> str:
|
39 |
+
response = requests.get(url)
|
40 |
+
page_content = response.text
|
41 |
+
print(page_content)
|
42 |
+
docs = [Document(page_content=page_content, metadata={"source": url})]
|
43 |
+
web_docs = self.text_splitter.split_documents(docs)
|
44 |
+
results = []
|
45 |
+
for i in range(0, len(web_docs), 4):
|
46 |
+
input_docs = web_docs[i:i+4]
|
47 |
+
window_result = self.qa_chain({"input_documents": input_docs, "question": question}, return_only_outputs=True)
|
48 |
+
results.append(f"Response from window {i} - {window_result}")
|
49 |
+
results_docs = [Document(page_content="\n".join(results), metadata={"source": url})]
|
50 |
+
print(results_docs)
|
51 |
+
return self.qa_chain({"input_documents": results_docs, "question": question}, return_only_outputs=True)
|
52 |
+
|
53 |
+
async def _arun(self, url: str, question: str) -> str:
|
54 |
+
raise NotImplementedError
|
55 |
+
|
56 |
+
def run_llm(url, query):
|
57 |
+
llm = ChatOpenAI(temperature=0.5)
|
58 |
+
query_website_tool = WebpageQATool(qa_chain=load_qa_with_sources_chain(llm))
|
59 |
+
result = query_website_tool._run(url, query) # Pass the URL and query as arguments
|
60 |
+
return result
|
61 |
+
|
62 |
+
st.markdown("<h1 style='text-align: center; color: green;'>Info Retrieval from Website π¦ </h1>", unsafe_allow_html=True)
|
63 |
+
st.markdown("<h3 style='text-align: center; color: green;'>Developed by <a href='https://github.com/AIAnytime'>AI Anytime with β€οΈ </a></h3>", unsafe_allow_html=True)
|
64 |
+
st.markdown("<h2 style='text-align: center; color:red;'>Enter the Website URL π</h2>", unsafe_allow_html=True)
|
65 |
+
|
66 |
+
input_url = st.text_input("Enter the URL")
|
67 |
+
|
68 |
+
if len(input_url)>0:
|
69 |
+
url_name = get_url_name(input_url)
|
70 |
+
st.info("Your URL is: π")
|
71 |
+
st.write(url_name)
|
72 |
+
|
73 |
+
st.markdown("<h4 style='text-align: center; color:green;'>Enter Your Query π</h4>", unsafe_allow_html=True)
|
74 |
+
your_query = st.text_area("Query the Website")
|
75 |
+
if st.button("Get Answers"):
|
76 |
+
if len(your_query)>0:
|
77 |
+
st.info("Your query is: "+ your_query)
|
78 |
+
|
79 |
+
final_answer = run_llm(input_url, your_query)
|
80 |
+
st.write(final_answer)
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
openai
|
3 |
+
trafilatura
|
4 |
+
streamlit
|
5 |
+
python-dotenv
|