peterdamn commited on
Commit
8f7a246
·
1 Parent(s): 637ad7c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -4,7 +4,7 @@ import torch
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
-
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
@@ -12,10 +12,12 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
 
 
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
@@ -25,11 +27,18 @@ def translate(audio):
25
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
26
  return outputs["text"]
27
 
28
-
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt", padding='max_length', truncation=True)
31
- speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
 
 
 
32
  return speech.cpu()
 
 
 
 
 
33
 
34
 
35
  def speech_to_speech_translation(audio):
 
4
  from datasets import load_dataset
5
 
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
+ from transformers import VitsModel, VitsTokenizer
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
+ # model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
17
 
 
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
+ model = VitsModel.from_pretrained("Matthijs/mms-tts-nld")
20
+ tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld")
21
 
22
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
23
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
27
  outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
28
  return outputs["text"]
29
 
 
30
  def synthesise(text):
31
+ inputs = tokenizer(text, return_tensors="pt")
32
+ with torch.no_grad():
33
+ outputs = model(inputs["input_ids"])
34
+ speech = outputs.audio[0]
35
+
36
  return speech.cpu()
37
+
38
+ # def synthesise(text):
39
+ # inputs = processor(text=text, return_tensors="pt", padding='max_length', truncation=True)
40
+ # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
41
+ # return speech.cpu()
42
 
43
 
44
  def speech_to_speech_translation(audio):