Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ import torch
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
-
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
@@ -12,10 +12,12 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
|
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
|
|
|
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
@@ -25,11 +27,18 @@ def translate(audio):
|
|
25 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
26 |
return outputs["text"]
|
27 |
|
28 |
-
|
29 |
def synthesise(text):
|
30 |
-
inputs =
|
31 |
-
|
|
|
|
|
|
|
32 |
return speech.cpu()
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
def speech_to_speech_translation(audio):
|
|
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
+
from transformers import VitsModel, VitsTokenizer
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
16 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
|
17 |
|
|
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-nld")
|
20 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-nld")
|
21 |
|
22 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
23 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
|
|
27 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
|
28 |
return outputs["text"]
|
29 |
|
|
|
30 |
def synthesise(text):
|
31 |
+
inputs = tokenizer(text, return_tensors="pt")
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(inputs["input_ids"])
|
34 |
+
speech = outputs.audio[0]
|
35 |
+
|
36 |
return speech.cpu()
|
37 |
+
|
38 |
+
# def synthesise(text):
|
39 |
+
# inputs = processor(text=text, return_tensors="pt", padding='max_length', truncation=True)
|
40 |
+
# speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
41 |
+
# return speech.cpu()
|
42 |
|
43 |
|
44 |
def speech_to_speech_translation(audio):
|