peterkros commited on
Commit
144e4aa
·
verified ·
1 Parent(s): f748e9e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load your model and tokenizer
5
+ tokenizer = AutoTokenizer.from_pretrained("allenai/llama")
6
+ model = AutoModelForCausalLM.from_pretrained("allenai/llama")
7
+
8
+ # Load a content moderation pipeline
9
+ moderation_pipeline = pipeline("text-classification", model="typeform/mobilebert-uncased-mnli")
10
+
11
+ # Function to load bad words from a file
12
+ def load_bad_words(filepath):
13
+ with open(filepath, 'r', encoding='utf-8') as file:
14
+ return [line.strip().lower() for line in file]
15
+
16
+ # Load bad words list
17
+ bad_words = load_bad_words('badwords.txt') # Adjust the path to your bad words file
18
+
19
+ def is_inappropriate_or_offtopic(message, topics):
20
+ # Check for inappropriate content using the loaded bad words list
21
+ if any(bad_word in message.lower() for bad_word in bad_words):
22
+ return True
23
+ # Check if off-topic
24
+ if topics and not any(topic.lower() in message.lower() for topic in topics if topic):
25
+ return True
26
+ return False
27
+
28
+ def check_content(message):
29
+ predictions = moderation_pipeline(message)
30
+ if predictions[0]['label'] == 'LABEL_1': # Adjust based on the model's output
31
+ return True
32
+ return False
33
+
34
+ def generate_response(prompt, topic1, topic2, topic3):
35
+ topics = [topic1, topic2, topic3] # Collect user-defined topics
36
+ if is_inappropriate_or_offtopic(prompt, topics):
37
+ return "Sorry, let's try to keep our conversation focused on positive and relevant topics!"
38
+ if check_content(prompt):
39
+ return "I'm here to provide a safe and friendly conversation. Let's talk about something else."
40
+
41
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
42
+ outputs = model.generate(inputs, max_length=50, do_sample=True)
43
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
44
+ return response
45
+
46
+ # Define Gradio interface with topic inputs
47
+ iface = gr.Interface(fn=generate_response,
48
+ inputs=[gr.inputs.Textbox(lines=2, placeholder="Type your message here..."),
49
+ gr.inputs.Textbox(label="Topic 1", placeholder="Optional", default=""),
50
+ gr.inputs.Textbox(label="Topic 2", placeholder="Optional", default=""),
51
+ gr.inputs.Textbox(label="Topic 3", placeholder="Optional", default="")],
52
+ outputs="text",
53
+ title="Child-Safe Chatbot",
54
+ description="A chatbot that stays on topic and filters inappropriate content. Define up to three topics.")
55
+
56
+ # Run the app
57
+ if __name__ == "__main__":
58
+ iface.launch()