Spaces:
Sleeping
Sleeping
Create wrapper.py
Browse files
src/models/backbones/wrapper.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from functools import reduce
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from .mobilenetv2 import MobileNetV2
|
8 |
+
|
9 |
+
|
10 |
+
class BaseBackbone(nn.Module):
|
11 |
+
""" Superclass of Replaceable Backbone Model for Semantic Estimation
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self, in_channels):
|
15 |
+
super(BaseBackbone, self).__init__()
|
16 |
+
self.in_channels = in_channels
|
17 |
+
|
18 |
+
self.model = None
|
19 |
+
self.enc_channels = []
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
raise NotImplementedError
|
23 |
+
|
24 |
+
def load_pretrained_ckpt(self):
|
25 |
+
raise NotImplementedError
|
26 |
+
|
27 |
+
|
28 |
+
class MobileNetV2Backbone(BaseBackbone):
|
29 |
+
""" MobileNetV2 Backbone
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, in_channels):
|
33 |
+
super(MobileNetV2Backbone, self).__init__(in_channels)
|
34 |
+
|
35 |
+
self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
|
36 |
+
self.enc_channels = [16, 24, 32, 96, 1280]
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
|
40 |
+
x = self.model.features[0](x)
|
41 |
+
x = self.model.features[1](x)
|
42 |
+
enc2x = x
|
43 |
+
|
44 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
|
45 |
+
x = self.model.features[2](x)
|
46 |
+
x = self.model.features[3](x)
|
47 |
+
enc4x = x
|
48 |
+
|
49 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
|
50 |
+
x = self.model.features[4](x)
|
51 |
+
x = self.model.features[5](x)
|
52 |
+
x = self.model.features[6](x)
|
53 |
+
enc8x = x
|
54 |
+
|
55 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
|
56 |
+
x = self.model.features[7](x)
|
57 |
+
x = self.model.features[8](x)
|
58 |
+
x = self.model.features[9](x)
|
59 |
+
x = self.model.features[10](x)
|
60 |
+
x = self.model.features[11](x)
|
61 |
+
x = self.model.features[12](x)
|
62 |
+
x = self.model.features[13](x)
|
63 |
+
enc16x = x
|
64 |
+
|
65 |
+
# x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
|
66 |
+
x = self.model.features[14](x)
|
67 |
+
x = self.model.features[15](x)
|
68 |
+
x = self.model.features[16](x)
|
69 |
+
x = self.model.features[17](x)
|
70 |
+
x = self.model.features[18](x)
|
71 |
+
enc32x = x
|
72 |
+
return [enc2x, enc4x, enc8x, enc16x, enc32x]
|
73 |
+
|
74 |
+
def load_pretrained_ckpt(self):
|
75 |
+
# the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
|
76 |
+
ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
|
77 |
+
if not os.path.exists(ckpt_path):
|
78 |
+
print('cannot find the pretrained mobilenetv2 backbone')
|
79 |
+
exit()
|
80 |
+
|
81 |
+
ckpt = torch.load(ckpt_path)
|
82 |
+
self.model.load_state_dict(ckpt)
|