Spaces:
Sleeping
Sleeping
pgurazada1
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from langchain.agents.agent_types import AgentType
|
5 |
+
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
|
6 |
+
|
7 |
+
from langchain_openai import AzureChatOpenAI
|
8 |
+
|
9 |
+
from sklearn.datasets import fetch_openml
|
10 |
+
|
11 |
+
|
12 |
+
gpt35 = AzureChatOpenAI(
|
13 |
+
api_key=os.environ["AZURE_OPENAI_KEY"],
|
14 |
+
azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],
|
15 |
+
api_version="2023-05-15",
|
16 |
+
deployment_name="gpt-35-turbo"
|
17 |
+
)
|
18 |
+
|
19 |
+
bank_data, _ = fetch_openml(data_id=43718, return_X_y=True)
|
20 |
+
|
21 |
+
pandas_agent = create_pandas_dataframe_agent(
|
22 |
+
llm=gpt35,
|
23 |
+
df=bank_data,
|
24 |
+
verbose=True,
|
25 |
+
agent_type=AgentType.OPENAI_FUNCTIONS,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
def predict(user_input):
|
30 |
+
|
31 |
+
try:
|
32 |
+
response = pandas_agent.invoke(user_input)
|
33 |
+
|
34 |
+
prediction = response['output']
|
35 |
+
|
36 |
+
except Exception as e:
|
37 |
+
prediction = e
|
38 |
+
|
39 |
+
return prediction
|
40 |
+
|
41 |
+
|
42 |
+
textbox = gr.Textbox(placeholder="Enter your query here", lines=6)
|
43 |
+
|
44 |
+
interface = gr.Interface(
|
45 |
+
inputs=textbox, fn=predict, outputs="text",
|
46 |
+
title="Query BFSI customer information",
|
47 |
+
description="This web API presents an interface to ask questions on customer information stored in a database.",
|
48 |
+
examples=[["What is the average balance maintained by the users?", ""],
|
49 |
+
["How many users have subscribed to a term deposit?", ""]
|
50 |
+
]
|
51 |
+
)
|
52 |
+
|
53 |
+
with gr.Blocks() as demo:
|
54 |
+
interface.launch()
|
55 |
+
|
56 |
+
demo.queue(concurrency_count=16)
|
57 |
+
demo.launch()
|