from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split from gradio_client import Client client = Client("pgurazada1/diamond-price-predictor") dataset = fetch_openml(data_id=43355, as_frame=True, parser='auto') diamond_prices = dataset.data target = ['price'] numeric_features = ['carat'] categorical_features = ['shape', 'cut', 'color', 'clarity', 'report', 'type'] X = diamond_prices.drop(columns=target) y = diamond_prices[target] Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42 ) job = client.submit( 3, # float in 'Carat' Number component "Round", # Literal['Round', 'Princess', 'Emerald', 'Asscher', 'Cushion', 'Radiant', 'Oval', 'Pear', 'Marquise'] in 'Shape' Dropdown component "Ideal", # Literal['Ideal', 'Premium', 'Very Good', 'Good', 'Fair'] in 'Cut' Dropdown component "D", # Literal['D', 'E', 'F', 'G', 'H', 'I', 'J'] in 'Color' Dropdown component "IF", # Literal['IF', 'VVS1', 'VVS2', 'VS1', 'VS2', 'SI1', 'SI2', 'I1'] in 'Clarity' Dropdown component "GIA", # Literal['GIA', 'IGI', 'HRD', 'AGS'] in 'Report' Dropdown component "Natural", # Literal['Natural', 'Lab Grown'] in 'Type' Dropdown component api_name="/predict" ) print(job.result())