import joblib from sklearn.datasets import fetch_openml from sklearn.preprocessing import StandardScaler, OneHotEncoder from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor dataset = fetch_openml(data_id=43355, as_frame=True, parser='auto') diamond_prices = dataset.data target = ['price'] numeric_features = ['carat'] categorical_features = ['shape', 'cut', 'color', 'clarity', 'report', 'type'] X = diamond_prices.drop(columns=target) y = diamond_prices[target] Xtrain, Xtest, ytrain, ytest = train_test_split( X, y, test_size=0.2, random_state=42 ) preprocessor = make_column_transformer( (StandardScaler(), numeric_features), (OneHotEncoder(handle_unknown='ignore'), categorical_features) ) model_pipeline = make_pipeline(preprocessor, DecisionTreeRegressor()) model_pipeline.fit(Xtrain, ytrain) joblib.dump(model_pipeline, 'model-v1.joblib')