Spaces:
Runtime error
Runtime error
import os | |
import uuid | |
import joblib | |
import json | |
import gradio as gr | |
import pandas as pd | |
from huggingface_hub import CommitScheduler | |
from pathlib import Path | |
# Run the training script placed in the same directory as app.py | |
# The training script will train and persist a logistic regression | |
# model with the filename 'model.joblib' | |
os.system("python train.py") | |
# Load the freshly trained model from disk | |
machine_failure_predictor = joblib.load('model.joblib') | |
# Prepare the logging functionality | |
log_file = Path("logs/") / f"data_{uuid.uuid4()}.json" | |
log_folder = log_file.parent | |
scheduler = CommitScheduler( | |
repo_id="machine-failure-mlops-demo-logs", | |
repo_type="dataset", | |
folder_path=log_folder, | |
path_in_repo="data", | |
every=2 | |
) | |
# Define the predict function that runs when 'Submit' is clicked or when a API request is made | |
def predict_machine_failure(air_temperature, process_temperature, rotational_speed, torque, tool_wear, type): | |
sample = { | |
'Air temperature [K]': air_temperature, | |
'Process temperature [K]': process_temperature, | |
'Rotational speed [rpm]': rotational_speed, | |
'Torque [Nm]': torque, | |
'Tool wear [min]': tool_wear, | |
'Type': type | |
} | |
data_point = pd.DataFrame([sample]) | |
prediction = machine_failure_predictor.predict(data_point).tolist() | |
# While the prediction is made, log both the inputs and outputs to a local log file | |
# While writing to the log file, ensure that the commit scheduler is locked to avoid parallel | |
# access | |
with scheduler.lock: | |
with log_file.open("a") as f: | |
f.write(json.dumps( | |
{ | |
'Air temperature [K]': air_temperature, | |
'Process temperature [K]': process_temperature, | |
'Rotational speed [rpm]': rotational_speed, | |
'Torque [Nm]': torque, | |
'Tool wear [min]': tool_wear, | |
'Type': type, | |
'prediction': prediction[0] | |
} | |
)) | |
f.write("\n") | |
return prediction[0] | |
# Set up UI components for input and output | |
air_temperature_input = gr.Number(label='Air temperature [K]') | |
process_temperature_input = gr.Number(label='Process temperature [K]') | |
rotational_speed_input = gr.Number(label='Rotational speed [rpm]') | |
torque_input = gr.Number(label='Torque [Nm]') | |
tool_wear_input = gr.Number(label='Tool wear [min]') | |
type_input = gr.Dropdown( | |
['L', 'M', 'H'], | |
label='Type' | |
) | |
model_output = gr.Label(label="Machine failure") | |
# Create the interface | |
demo = gr.Interface( | |
fn=predict_machine_failure, | |
inputs=[air_temperature_input, process_temperature_input, rotational_speed_input, | |
torque_input, tool_wear_input, type_input], | |
outputs=model_output, | |
title="Machine Failure Predictor", | |
description="This API allows you to predict the machine failure status of an equipment", | |
examples=[[300.8, 310.3, 1538, 36.1, 198, 'L'], | |
[296.3, 307.3, 1368, 49.5, 10, 'M'], | |
[298.6, 309.1, 1339, 51.1, 34, 'M'], | |
[302.4, 311.1, 1634, 34.2, 184, 'L'], | |
[297.9, 307.7, 1546, 37.6, 72, 'L']], | |
concurrency_limit=16 | |
) | |
# Launch with a load balancer | |
demo.queue() | |
demo.launch(share=False) |