Spaces:
Runtime error
Runtime error
import joblib | |
from sklearn.datasets import fetch_openml | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.compose import make_column_transformer | |
from sklearn.pipeline import make_pipeline | |
from sklearn.model_selection import train_test_split, RandomizedSearchCV | |
from sklearn.linear_model import LogisticRegression | |
from sklearn.metrics import accuracy_score, classification_report | |
dataset = fetch_openml(data_id=42890, as_frame=True, parser="auto") | |
data_df = dataset.data | |
target = 'Machine failure' | |
numeric_features = [ | |
'Air temperature [K]', | |
'Process temperature [K]', | |
'Rotational speed [rpm]', | |
'Torque [Nm]', | |
'Tool wear [min]' | |
] | |
categorical_features = ['Type'] | |
print("Creating Data Subsets") | |
X = data_df[numeric_features + categorical_features] | |
y = data_df[target] | |
Xtrain, Xtest, ytrain, ytest = train_test_split( | |
X, y, | |
test_size=0.2, | |
random_state=42 | |
) | |
preprocessor = make_column_transformer( | |
(StandardScaler(), numeric_features), | |
(OneHotEncoder(handle_unknown='ignore'), categorical_features) | |
) | |
model_logistic_regression = LogisticRegression(n_jobs=-1) | |
print("Estimating the Best Model Pipeline") | |
model_pipeline = make_pipeline( | |
preprocessor, | |
model_logistic_regression | |
) | |
param_distribution = { | |
"logisticregression__C": [0.001, 0.01, 0.1, 0.5, 1, 5, 10] | |
} | |
rand_search_cv = RandomizedSearchCV( | |
model_pipeline, | |
param_distribution, | |
n_iter=3, | |
cv=3, | |
random_state=42 | |
) | |
rand_search_cv.fit(Xtrain, ytrain) | |
print("Logging Metrics") | |
print(f"Accuracy: {rand_search_cv.best_score_}") | |
print(f"Best parameters: {rand_search_cv.best_params_}") | |
print("Serializing the Best Model") | |
saved_model_path = "model.joblib" | |
joblib.dump(rand_search_cv.best_estimator_, saved_model_path) |