Spaces:
Runtime error
Runtime error
File size: 5,676 Bytes
39a832e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import speech_recognition as sr
import ollama
from gtts import gTTS
import gradio as gr
from io import BytesIO
import numpy as np
from dataclasses import dataclass, field
import time
import traceback
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
r = sr.Recognizer()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
stopped: bool = False
conversation: list = field(default_factory=list)
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
if sr != sampling_rate:
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
if sr != sampling_rate:
# resample to original sampling rate
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
else:
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
print(msg)
return -1, ori_audio, round(time.time() - _st, 4)
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
"""Take in the stream, determine if a pause happened"""
temp_audio = audio
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
duration = len(audio) / sampling_rate
if dur_vad > 0.5 and not state.started_talking:
print("started talking")
state.started_talking = True
return False
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
return (duration - dur_vad) > 1
def process_audio(audio:tuple, state:AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected and state.started_talking:
return gr.Audio(recording=False), state
return None, state
def response(state:AppState):
if not state.pause_detected and not state.started_talking:
return None, AppState()
audio_buffer = BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
textin = ""
with sr.AudioFile(audio_buffer) as source:
audio_data=r.record(source)
try:
textin=r.recognize_google(audio_data,language='vi')
except:
textin = ""
state.conversation.append({"role": "user", "content": "Bạn: " + textin})
if textin != "":
print("Đang nghĩ...")
response = ollama.chat(model='llama3.2', messages=[
{
'role': 'user',
'content': textin,
},
])
textout=response['message']['content']
textout = textout.replace('*','')
state.conversation.append({"role": "user", "content": "Trợ lý: " + textout})
if textout != "":
print("Đang đọc...")
mp3 = gTTS(textout,tld='com.vn',lang='vi',slow=False)
mp3_fp = BytesIO()
mp3.write_to_fp(mp3_fp)
srr=mp3_fp.getvalue()
mp3_fp.close()
#yield srr, state
yield srr, AppState(conversation=state.conversation)
def start_recording_user(state: AppState):
if not state.stopped:
return gr.Audio(recording=True)
title = "vietnamese by tuphamkts"
description = "A vietnamese text-to-speech demo."
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
with gr.Column():
chatbot = gr.Chatbot(label="Nội dung trò chuyện", type="messages")
output_audio = gr.Audio(label="Trợ lý", autoplay=True)
state = gr.State(value=AppState())
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.50,
time_limit=30,
)
respond = input_audio.stop_recording(
response,
[state],
[output_audio, state],
)
respond.then(lambda s: s.conversation, [state], [chatbot])
restart = output_audio.stop(
start_recording_user,
[state],
[input_audio],
)
cancel = gr.Button("Stop Conversation", variant="stop")
cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
[state, input_audio], cancels=[respond, restart])
demo.launch(server_name="0.0.0.0", server_port=7860, debug='false', share=True) |