assistant / app.py
phamngoctukts's picture
Update app.py
adf8038 verified
raw
history blame
15.6 kB
import speech_recognition as sr
from gtts import gTTS
import gradio as gr
from io import BytesIO
import numpy as np
from dataclasses import dataclass, field
import time
from pydub import AudioSegment
import librosa
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
from PIL import Image
from ClassPrompt import PromptClass
import render
creator_prompt = PromptClass()
r = sr.Recognizer()
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
started_talking: bool = False
stopped: bool = False
history: list = field(default_factory=list)
typing: bool = False
painting:bool = False
image_out:Image.Image = None
image_in:Image = None
conversation:list = field(default_factory=list)
recording: bool = False # Thêm thuộc tính recording
pause_threshold: float = 1 # Thêm thuộc tính pause_threshold
def run_vad(ori_audio, sr):
_st = time.time()
try:
audio = ori_audio
audio = audio.astype(np.float32) / 32768.0
sampling_rate = 16000
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
vad_parameters = {}
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate # Khai báo và tính toán duration_after_vad
vad_audio = audio
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
vad_audio_bytes = vad_audio.tobytes()
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
except Exception as e:
return -1, ori_audio, round(time.time() - _st, 4)
def determine_pause(audio:np.ndarray,sampling_rate:int,state:AppState) -> bool:
"""Phát hiện tạm dừng trong âm thanh."""
temp_audio = audio
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
duration = len(audio) / sampling_rate
if dur_vad > 0.5 and not state.started_talking:
print("started talking")
state.started_talking = True
return False
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
return (duration - dur_vad) > state.pause_threshold # Sử dụng state.pause_threshold
def process_audio(audio:tuple,state:AppState,image:Image):
if state.recording: # Kiểm tra state.stream:
time.sleep(0.1)
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
state.image_in=image
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected and state.started_talking:
state.recording = False
return state, gr.Audio(recording=False)
return state, None
def transcribe_audio(audio_segment):
audio_buffer = BytesIO()
audio_segment.export(audio_buffer, format="wav")
audio_buffer.seek(0)
try:
with sr.AudioFile(audio_buffer) as source:
r.adjust_for_ambient_noise(source)
text = r.recognize_google(r.record(source), language='vi')
return text
except sr.UnknownValueError:
print("Could not understand audio.")
except sr.RequestError as e:
print(f"Could not request results from Google Speech Recognition service; {e}")
return ""
def chat_with_onlinemodel(user_input, state:AppState):
state.history.append({"role": "user", "content": user_input})
response = creator_prompt.chat(provider="SambaNova", model="Meta-Llama-3.1-405B-Instruct", input_text=state.history)
bot_response = response
characters = bot_response.replace("*","")
state.history.append({"role": "assistant", "content": characters})
state.conversation.append({"role": "user", "content":"Bạn: " + user_input})
state.conversation.append({"role": "assistant", "content":"Bot: " + characters})
return characters, state
def synthesize_speech(text):
"""Chuyển đổi text sang giọng nói bằng gTTS."""
try:
mp3 = gTTS(text, tld='com.vn', lang='vi', slow=False)
mp3_fp = BytesIO()
mp3.write_to_fp(mp3_fp)
audio_bytes = mp3_fp.getvalue()
mp3_fp.close()
return audio_bytes # Chỉ trả về audio_bytes
except Exception as e:
print(f"Lỗi tổng hợp giọng nói: {e}")
return None
def response_audio(state:AppState):
"""Xử lý yêu cầu và tạo phản hồi."""
if not state.pause_detected and not state.started_talking:
return state, None
textin=""
audio_segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=1 if state.stream.ndim == 1 else state.stream.shape[1]
)
textin = transcribe_audio(audio_segment)
state.stream = None
if state.typing is False:
txt,state = chuyen_trangthai(textin, state)
if txt == True:
return state, synthesize_speech("chuyển sang trạng thái dùng bàn phím")
if textin != "":
paint=state.painting
state.painting = text_check(textin, state.painting)
if paint != state.painting:
return state, synthesize_speech("Đã chuyển sang chế độ " + ("vẽ" if state.painting else "nói chuyện"))
if state.painting is True:
promptx = prompt_hugingface(textin,"Hugging Face","Qwen/Qwen2.5-72B-Instruct","Medium")
if state.image_in:
img=resize(state.image_in)
else:
img=None
state.image_out = render.generate_images(textin, img)
audio_bytes = synthesize_speech("Bạn thấy tôi vẽ "+textin+" có đẹp không")
return state, audio_bytes
else:
print("Đang nghĩ...")
text_out, state = chat_with_onlinemodel(textin,state)
audio_bytes = synthesize_speech(text_out)
return state, audio_bytes
else:
return state, synthesize_speech("Tôi nghe không rõ") # Trả về thông báo lỗi nếu synthesize_speech thất bại
def response_text(state:AppState,textin,image:Image, prompt, progress=gr.Progress(track_tqdm=True)):
"""Xử lý yêu cầu và tạo phản hồi."""
#state.recording = False # Dừng ghi âm
if state.typing is True:
txt,state = chuyen_trangthai(textin, state)
if txt == False:
return state, synthesize_speech("chuyển sang trạng thái nói")
if textin != "":
paint=state.painting
state.painting = text_check(textin, state.painting)
if paint != state.painting:
return state, synthesize_speech("Đã chuyển sang chế độ " + ("vẽ" if state.painting else "nói chuyện"))
if state.painting is True:
state.conversation.append({"role": "user", "content":"Bạn: " + textin})
#state.image_out = generate_image(textin, image, streng, ckpt,guidance)
if image:
img=resize(image)
else:
img=None
image_out = render.generate_images(textin, img)
state.image_out = image_out
audio_bytes = synthesize_speech("Bạn thấy tôi vẽ "+prompt+" có đẹp không")
return state, audio_bytes
else:
print("Đang nghĩ...")
text_out, state = chat_with_onlinemodel(textin,state=state)
audio_bytes = synthesize_speech(text_out)
return state, audio_bytes
else:
return state, synthesize_speech("Hãy gõ nội dung") # Trả về thông báo lỗi nếu synthesize_speech thất bại
def text_check(textin, painting):
if not painting:
return "sang chế độ vẽ" in textin
return "sang chế độ nói" not in textin
def chuyen_trangthai(textin, state:AppState):
if "muốn nói chuyện" in textin:
state.started_talking = False
state.recording = True
state.stopped=False
state.typing = False
return False, state
elif "dùng bàn phím" in textin:
state.started_talking = False
state.recording = False
state.stopped=True
state.typing = True
return True, state
else:
return state.typing, state
def start_recording_user(state:AppState,progress=gr.Progress(track_tqdm=True)): # Sửa lỗi tại đây
state.stopped = False # Cho phép bắt đầu ghi âm lại nếu đang ở trạng thái recording
state.started_talking = False
state.recording = True
return gr.Audio(recording=True), state
def restart_recording(state:AppState): # Sửa lỗi tại đây
if not state.stopped: # Cho phép bắt đầu ghi âm lại nếu đang ở trạng thái recording
state.started_talking = False
state.recording = True
return gr.Audio(recording=True), state
else:
state.started_talking = False
state.recording = False
return gr.Audio(recording=False), state
def prompt_hugingface(prompt,llm_provider,model,type):
result = creator_prompt.generate(
input_text=prompt,
long_talk=True,
compress=True,
compression_level="hard",
poster=False,
prompt_type=type, # Use the updated prompt_type here
custom_base_prompt="",
provider=llm_provider,
model=model
)
output = result
return output
def resize(img:Image.Image):
height = (img.height // 8) * 8
width = (img.width // 8) * 8
imgre = img.resize((width,height))
return imgre
loaded = ""
steps = 50
def update_model_choices(provider):
provider_models = {
"Hugging Face": [
"Qwen/Qwen2.5-72B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3"
],
"SambaNova": [
"Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-8B-Instruct"
],
}
models = provider_models.get(provider, [])
return gr.Dropdown(choices=models, value=models[0] if models else "")
title = "Chat tiếng việt by tuphamkts"
description = "Muốn vẽ nói: Chuyển sang chế độ vẽ. Muốn chat nói: Chuyển sang chế độ nói. Chế độ gõ: Tôi muốn dùng bàn phím, chế độ nói: Tôi muốn nói chuyện. Ghi chú: Chỉ dừng chương trình khi tôi đang nói (lịch sử chat sẽ bị xóa khi dừng chương trình)."
examples = ["Chuyển sang chế độ vẽ","Chuyển sang chế độ nói"]
with gr.Blocks(title=title) as demo:
gr.HTML(f"<div style='text-align: center;'><h1>{title}</h1><p>{description}</p></div>")
with gr.Row():
with gr.Column():
with gr.Column(visible=False) as prompt_visible:
with gr.Row():
llm_provider = gr.Dropdown(choices=["Hugging Face", "SambaNova"], label="Nguồn model", value="Hugging Face")
model = gr.Dropdown(label="Chọn Model", choices=["Qwen/Qwen2.5-72B-Instruct","meta-llama/Meta-Llama-3.1-70B-Instruct","mistralai/Mixtral-8x7B-Instruct-v0.1","mistralai/Mistral-7B-Instruct-v0.3"], value="Qwen/Qwen2.5-72B-Instruct")
prompt_types = ["Long", "Short", "Medium", "OnlyObjects", "NoFigure", "Landscape", "Fantasy"]
prompt_type = gr.Dropdown(choices=prompt_types, label="Phong cách", value="Medium", interactive=True)
input_prompt = gr.Textbox(label="Nhập nội dung muốn vẽ",value="Một cô gái", type="text"),
generate_prompt = gr.Button("Tạo Prompt", variant="stop")
with gr.Column(visible=False) as typing_visible:
input_text = gr.Textbox(label="Nhập nội dung trao đổi", type="text"),
submit = gr.Button("Áp dụng", variant="stop")
input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
output_audio = gr.Audio(label="Trợ lý", autoplay=True, sources=None,type="numpy")
input_image = gr.Image(label="Hình ảnh của bạn", sources=["upload","clipboard","webcam"], type="pil",visible=True)
with gr.Column(visible=False) as image_visible:
output_image = gr.Image(label="Hình ảnh sau xử lý", sources=None, type="pil",visible=True)
with gr.Column(visible=True) as chatbot_visible:
chatbot = gr.Chatbot(label="Nội dung trò chuyện",type="messages")
state = gr.State(value=AppState())
#state = gr.State(value=AppState(typing=True, painting=True))
startrecord = input_audio.start_recording(
start_recording_user,
[state],
[input_audio, state],
)
stream = input_audio.stream(
process_audio,
[input_audio, state,input_image],
[state,input_audio],
stream_every=1,
time_limit=30,
)
respond = input_audio.stop_recording(
fn=response_audio,
inputs=[state],
outputs=[state, output_audio],
)
respond.then(lambda s: s.conversation, [state], [chatbot])
respond.then(lambda s: s.image_out, [state], [output_image])
restart = output_audio.stop(
restart_recording,
[state],
[input_audio, state],
)
restart.then(lambda s: gr.update(visible= not s.typing, recording = not s.typing), [state], [input_audio])
restart.then(lambda s: gr.update(visible=s.typing), [state], [typing_visible])
restart.then(lambda s: gr.update(visible=s.painting), [state], [image_visible])
restart.then(lambda s: gr.update(visible=(s.painting and s.typing) if s.painting==True else False), [state], [prompt_visible])
restart.then(lambda s: gr.update(visible= not s.painting), [state], [chatbot_visible])
cancel = gr.Button("Dừng chương trình", variant="stop", interactive=False)
stream.then(lambda s: gr.update(interactive= not s.stopped), [state], [cancel])
cancel.click(
lambda: (AppState(stopped=True, recording=False, started_talking = False), gr.Audio(recording=False), gr.update(interactive=False)),
None,[state, input_audio, cancel],
cancels=[respond, stream, startrecord] # Thêm startrecord và stream vào cancels
)
sub = submit.click(
fn=response_text,
inputs=[state, input_text[0], input_image, input_prompt[0]],
outputs=[state, output_audio]
)
sub.then(lambda s: s.conversation, [state], [chatbot])
sub.then(lambda s: s.image_out, [state], [output_image])
generator = generate_prompt.click(
fn=prompt_hugingface,
inputs=[input_prompt[0],llm_provider,model,prompt_type],
outputs=[input_text[0]]
)
llm_provider.change(
update_model_choices,
inputs=[llm_provider],
outputs=[model]
)
gr.Examples(
examples=examples,
inputs=input_text,
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)