Spaces:
Runtime error
Runtime error
phamngoctukts
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,157 +1,157 @@
|
|
1 |
-
import speech_recognition as sr
|
2 |
-
import ollama
|
3 |
-
from gtts import gTTS
|
4 |
-
import gradio as gr
|
5 |
-
from io import BytesIO
|
6 |
-
import numpy as np
|
7 |
-
from dataclasses import dataclass, field
|
8 |
-
import time
|
9 |
-
import traceback
|
10 |
-
from pydub import AudioSegment
|
11 |
-
import librosa
|
12 |
-
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
|
13 |
-
from transformers import pipeline
|
14 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
|
15 |
-
import torch
|
16 |
-
from huggingface_hub import login
|
17 |
-
tk = "hf" + "_" + "qTOSlDtDtBgJbofv" + "MglsjjhQqbRAYRYnXy"
|
18 |
-
login(tk)
|
19 |
-
|
20 |
-
r = sr.Recognizer()
|
21 |
-
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained("meta-llama/
|
23 |
-
model = AutoModelForCausalLM.from_pretrained("meta-llama/
|
24 |
-
text2text = pipeline("text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", use_auth_token=True)
|
25 |
-
|
26 |
-
@dataclass
|
27 |
-
class AppState:
|
28 |
-
stream: np.ndarray | None = None
|
29 |
-
sampling_rate: int = 0
|
30 |
-
pause_detected: bool = False
|
31 |
-
started_talking: bool = False
|
32 |
-
stopped: bool = False
|
33 |
-
conversation: list = field(default_factory=list)
|
34 |
-
|
35 |
-
def run_vad(ori_audio, sr):
|
36 |
-
_st = time.time()
|
37 |
-
try:
|
38 |
-
audio = ori_audio
|
39 |
-
audio = audio.astype(np.float32) / 32768.0
|
40 |
-
sampling_rate = 16000
|
41 |
-
if sr != sampling_rate:
|
42 |
-
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
|
43 |
-
vad_parameters = {}
|
44 |
-
vad_parameters = VadOptions(**vad_parameters)
|
45 |
-
speech_chunks = get_speech_timestamps(audio, vad_parameters)
|
46 |
-
audio = collect_chunks(audio, speech_chunks)
|
47 |
-
duration_after_vad = audio.shape[0] / sampling_rate
|
48 |
-
if sr != sampling_rate:
|
49 |
-
# resample to original sampling rate
|
50 |
-
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
|
51 |
-
else:
|
52 |
-
vad_audio = audio
|
53 |
-
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
|
54 |
-
vad_audio_bytes = vad_audio.tobytes()
|
55 |
-
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
|
56 |
-
except Exception as e:
|
57 |
-
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
|
58 |
-
print(msg)
|
59 |
-
return -1, ori_audio, round(time.time() - _st, 4)
|
60 |
-
|
61 |
-
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
|
62 |
-
"""Take in the stream, determine if a pause happened"""
|
63 |
-
temp_audio = audio
|
64 |
-
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
|
65 |
-
duration = len(audio) / sampling_rate
|
66 |
-
if dur_vad > 0.5 and not state.started_talking:
|
67 |
-
print("started talking")
|
68 |
-
state.started_talking = True
|
69 |
-
return False
|
70 |
-
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
|
71 |
-
return (duration - dur_vad) > 1
|
72 |
-
|
73 |
-
def process_audio(audio:tuple, state:AppState):
|
74 |
-
if state.stream is None:
|
75 |
-
state.stream = audio[1]
|
76 |
-
state.sampling_rate = audio[0]
|
77 |
-
else:
|
78 |
-
state.stream = np.concatenate((state.stream, audio[1]))
|
79 |
-
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
|
80 |
-
state.pause_detected = pause_detected
|
81 |
-
if state.pause_detected and state.started_talking:
|
82 |
-
return gr.Audio(recording=False), state
|
83 |
-
return None, state
|
84 |
-
|
85 |
-
def response(state:AppState):
|
86 |
-
if not state.pause_detected and not state.started_talking:
|
87 |
-
return None, AppState()
|
88 |
-
audio_buffer = BytesIO()
|
89 |
-
segment = AudioSegment(
|
90 |
-
state.stream.tobytes(),
|
91 |
-
frame_rate=state.sampling_rate,
|
92 |
-
sample_width=state.stream.dtype.itemsize,
|
93 |
-
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
|
94 |
-
)
|
95 |
-
segment.export(audio_buffer, format="wav")
|
96 |
-
textin = ""
|
97 |
-
with sr.AudioFile(audio_buffer) as source:
|
98 |
-
audio_data=r.record(source)
|
99 |
-
try:
|
100 |
-
textin=r.recognize_google(audio_data,language='vi')
|
101 |
-
except:
|
102 |
-
textin = ""
|
103 |
-
state.conversation.append({"role": "user", "content": "Bạn: " + textin})
|
104 |
-
if textin != "":
|
105 |
-
print("Đang nghĩ...")
|
106 |
-
textout=str(text2text(textin))
|
107 |
-
textout = textout.replace('*','')
|
108 |
-
state.conversation.append({"role": "user", "content": "Trợ lý: " + textout})
|
109 |
-
if textout != "":
|
110 |
-
print("Đang đọc...")
|
111 |
-
mp3 = gTTS(textout,tld='com.vn',lang='vi',slow=False)
|
112 |
-
mp3_fp = BytesIO()
|
113 |
-
mp3.write_to_fp(mp3_fp)
|
114 |
-
srr=mp3_fp.getvalue()
|
115 |
-
mp3_fp.close()
|
116 |
-
#yield srr, state
|
117 |
-
yield srr, AppState(conversation=state.conversation)
|
118 |
-
|
119 |
-
def start_recording_user(state: AppState):
|
120 |
-
if not state.stopped:
|
121 |
-
return gr.Audio(recording=True)
|
122 |
-
|
123 |
-
title = "vietnamese by tuphamkts"
|
124 |
-
description = "A vietnamese text-to-speech demo."
|
125 |
-
|
126 |
-
with gr.Blocks() as demo:
|
127 |
-
with gr.Row():
|
128 |
-
with gr.Column():
|
129 |
-
input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
|
130 |
-
with gr.Column():
|
131 |
-
chatbot = gr.Chatbot(label="Nội dung trò chuyện", type="messages")
|
132 |
-
output_audio = gr.Audio(label="Trợ lý", autoplay=True)
|
133 |
-
state = gr.State(value=AppState())
|
134 |
-
|
135 |
-
stream = input_audio.stream(
|
136 |
-
process_audio,
|
137 |
-
[input_audio, state],
|
138 |
-
[input_audio, state],
|
139 |
-
stream_every=0.50,
|
140 |
-
time_limit=30,
|
141 |
-
)
|
142 |
-
respond = input_audio.stop_recording(
|
143 |
-
response,
|
144 |
-
[state],
|
145 |
-
[output_audio, state],
|
146 |
-
)
|
147 |
-
respond.then(lambda s: s.conversation, [state], [chatbot])
|
148 |
-
|
149 |
-
restart = output_audio.stop(
|
150 |
-
start_recording_user,
|
151 |
-
[state],
|
152 |
-
[input_audio],
|
153 |
-
)
|
154 |
-
cancel = gr.Button("Stop Conversation", variant="stop")
|
155 |
-
cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
|
156 |
-
[state, input_audio], cancels=[respond, restart])
|
157 |
demo.launch()
|
|
|
1 |
+
import speech_recognition as sr
|
2 |
+
import ollama
|
3 |
+
from gtts import gTTS
|
4 |
+
import gradio as gr
|
5 |
+
from io import BytesIO
|
6 |
+
import numpy as np
|
7 |
+
from dataclasses import dataclass, field
|
8 |
+
import time
|
9 |
+
import traceback
|
10 |
+
from pydub import AudioSegment
|
11 |
+
import librosa
|
12 |
+
from utils.vad import get_speech_timestamps, collect_chunks, VadOptions
|
13 |
+
from transformers import pipeline
|
14 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel
|
15 |
+
import torch
|
16 |
+
from huggingface_hub import login
|
17 |
+
tk = "hf" + "_" + "qTOSlDtDtBgJbofv" + "MglsjjhQqbRAYRYnXy"
|
18 |
+
login(tk)
|
19 |
+
|
20 |
+
r = sr.Recognizer()
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-1B")
|
23 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B")
|
24 |
+
text2text = pipeline("text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", use_auth_token=True)
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class AppState:
|
28 |
+
stream: np.ndarray | None = None
|
29 |
+
sampling_rate: int = 0
|
30 |
+
pause_detected: bool = False
|
31 |
+
started_talking: bool = False
|
32 |
+
stopped: bool = False
|
33 |
+
conversation: list = field(default_factory=list)
|
34 |
+
|
35 |
+
def run_vad(ori_audio, sr):
|
36 |
+
_st = time.time()
|
37 |
+
try:
|
38 |
+
audio = ori_audio
|
39 |
+
audio = audio.astype(np.float32) / 32768.0
|
40 |
+
sampling_rate = 16000
|
41 |
+
if sr != sampling_rate:
|
42 |
+
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
|
43 |
+
vad_parameters = {}
|
44 |
+
vad_parameters = VadOptions(**vad_parameters)
|
45 |
+
speech_chunks = get_speech_timestamps(audio, vad_parameters)
|
46 |
+
audio = collect_chunks(audio, speech_chunks)
|
47 |
+
duration_after_vad = audio.shape[0] / sampling_rate
|
48 |
+
if sr != sampling_rate:
|
49 |
+
# resample to original sampling rate
|
50 |
+
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
|
51 |
+
else:
|
52 |
+
vad_audio = audio
|
53 |
+
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
|
54 |
+
vad_audio_bytes = vad_audio.tobytes()
|
55 |
+
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
|
56 |
+
except Exception as e:
|
57 |
+
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
|
58 |
+
print(msg)
|
59 |
+
return -1, ori_audio, round(time.time() - _st, 4)
|
60 |
+
|
61 |
+
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
|
62 |
+
"""Take in the stream, determine if a pause happened"""
|
63 |
+
temp_audio = audio
|
64 |
+
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate)
|
65 |
+
duration = len(audio) / sampling_rate
|
66 |
+
if dur_vad > 0.5 and not state.started_talking:
|
67 |
+
print("started talking")
|
68 |
+
state.started_talking = True
|
69 |
+
return False
|
70 |
+
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
|
71 |
+
return (duration - dur_vad) > 1
|
72 |
+
|
73 |
+
def process_audio(audio:tuple, state:AppState):
|
74 |
+
if state.stream is None:
|
75 |
+
state.stream = audio[1]
|
76 |
+
state.sampling_rate = audio[0]
|
77 |
+
else:
|
78 |
+
state.stream = np.concatenate((state.stream, audio[1]))
|
79 |
+
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
|
80 |
+
state.pause_detected = pause_detected
|
81 |
+
if state.pause_detected and state.started_talking:
|
82 |
+
return gr.Audio(recording=False), state
|
83 |
+
return None, state
|
84 |
+
|
85 |
+
def response(state:AppState):
|
86 |
+
if not state.pause_detected and not state.started_talking:
|
87 |
+
return None, AppState()
|
88 |
+
audio_buffer = BytesIO()
|
89 |
+
segment = AudioSegment(
|
90 |
+
state.stream.tobytes(),
|
91 |
+
frame_rate=state.sampling_rate,
|
92 |
+
sample_width=state.stream.dtype.itemsize,
|
93 |
+
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
|
94 |
+
)
|
95 |
+
segment.export(audio_buffer, format="wav")
|
96 |
+
textin = ""
|
97 |
+
with sr.AudioFile(audio_buffer) as source:
|
98 |
+
audio_data=r.record(source)
|
99 |
+
try:
|
100 |
+
textin=r.recognize_google(audio_data,language='vi')
|
101 |
+
except:
|
102 |
+
textin = ""
|
103 |
+
state.conversation.append({"role": "user", "content": "Bạn: " + textin})
|
104 |
+
if textin != "":
|
105 |
+
print("Đang nghĩ...")
|
106 |
+
textout=str(text2text(textin))
|
107 |
+
textout = textout.replace('*','')
|
108 |
+
state.conversation.append({"role": "user", "content": "Trợ lý: " + textout})
|
109 |
+
if textout != "":
|
110 |
+
print("Đang đọc...")
|
111 |
+
mp3 = gTTS(textout,tld='com.vn',lang='vi',slow=False)
|
112 |
+
mp3_fp = BytesIO()
|
113 |
+
mp3.write_to_fp(mp3_fp)
|
114 |
+
srr=mp3_fp.getvalue()
|
115 |
+
mp3_fp.close()
|
116 |
+
#yield srr, state
|
117 |
+
yield srr, AppState(conversation=state.conversation)
|
118 |
+
|
119 |
+
def start_recording_user(state: AppState):
|
120 |
+
if not state.stopped:
|
121 |
+
return gr.Audio(recording=True)
|
122 |
+
|
123 |
+
title = "vietnamese by tuphamkts"
|
124 |
+
description = "A vietnamese text-to-speech demo."
|
125 |
+
|
126 |
+
with gr.Blocks() as demo:
|
127 |
+
with gr.Row():
|
128 |
+
with gr.Column():
|
129 |
+
input_audio = gr.Audio(label="Nói cho tôi nghe nào", sources="microphone", type="numpy")
|
130 |
+
with gr.Column():
|
131 |
+
chatbot = gr.Chatbot(label="Nội dung trò chuyện", type="messages")
|
132 |
+
output_audio = gr.Audio(label="Trợ lý", autoplay=True)
|
133 |
+
state = gr.State(value=AppState())
|
134 |
+
|
135 |
+
stream = input_audio.stream(
|
136 |
+
process_audio,
|
137 |
+
[input_audio, state],
|
138 |
+
[input_audio, state],
|
139 |
+
stream_every=0.50,
|
140 |
+
time_limit=30,
|
141 |
+
)
|
142 |
+
respond = input_audio.stop_recording(
|
143 |
+
response,
|
144 |
+
[state],
|
145 |
+
[output_audio, state],
|
146 |
+
)
|
147 |
+
respond.then(lambda s: s.conversation, [state], [chatbot])
|
148 |
+
|
149 |
+
restart = output_audio.stop(
|
150 |
+
start_recording_user,
|
151 |
+
[state],
|
152 |
+
[input_audio],
|
153 |
+
)
|
154 |
+
cancel = gr.Button("Stop Conversation", variant="stop")
|
155 |
+
cancel.click(lambda: (AppState(stopped=True), gr.Audio(recording=False)), None,
|
156 |
+
[state, input_audio], cancels=[respond, restart])
|
157 |
demo.launch()
|