Spaces:
Running
on
A10G
Running
on
A10G
File size: 10,120 Bytes
95d3029 e900656 95d3029 5f7a532 95d3029 101d8cd 95d3029 101d8cd 95d3029 69a2249 95d3029 69a2249 95d3029 69a2249 95d3029 69a2249 95d3029 7f0599f 101d8cd 7f0599f 810b784 7f0599f 95d3029 ec4e754 101d8cd ec4e754 7ac65ca 43bc55e 7f0599f 69a2249 bf8293f a3cd3cd bf8293f 69a2249 95d3029 7f0599f 95d3029 7f0599f 69a2249 43bc55e e4cca8e 69a2249 7f0599f 95d3029 7f0599f 95d3029 69a2249 95d3029 5f7a532 7f0599f a3cd3cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
#!/usr/bin/env python3
import gradio as gr
import os
from clip_interrogator import Config, Interrogator
from huggingface_hub import hf_hub_download
from share_btn import community_icon_html, loading_icon_html, share_js
MODELS = ['ViT-L (best for Stable Diffusion 1.*)', 'ViT-H (best for Stable Diffusion 2.*)']
# download preprocessed files
PREPROCESS_FILES = [
'ViT-H-14_laion2b_s32b_b79k_artists.pkl',
'ViT-H-14_laion2b_s32b_b79k_flavors.pkl',
'ViT-H-14_laion2b_s32b_b79k_mediums.pkl',
'ViT-H-14_laion2b_s32b_b79k_movements.pkl',
'ViT-H-14_laion2b_s32b_b79k_trendings.pkl',
'ViT-L-14_openai_artists.pkl',
'ViT-L-14_openai_flavors.pkl',
'ViT-L-14_openai_mediums.pkl',
'ViT-L-14_openai_movements.pkl',
'ViT-L-14_openai_trendings.pkl',
]
print("Download preprocessed cache files...")
for file in PREPROCESS_FILES:
path = hf_hub_download(repo_id="pharma/ci-preprocess", filename=file, cache_dir="cache")
cache_path = os.path.dirname(path)
# load BLIP and ViT-L https://huggingface.co/openai/clip-vit-large-patch14
config = Config(cache_path=cache_path, clip_model_path="cache", clip_model_name="ViT-L-14/openai")
ci_vitl = Interrogator(config)
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
# load ViT-H https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K
config.blip_model = ci_vitl.blip_model
config.clip_model_name = "ViT-H-14/laion2b_s32b_b79k"
ci_vith = Interrogator(config)
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
def image_analysis(image, clip_model_name):
# move selected model to GPU and other model to CPU
if clip_model_name == MODELS[0]:
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
ci = ci_vitl
else:
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
ci = ci_vith
image = image.convert('RGB')
image_features = ci.image_to_features(image)
top_mediums = ci.mediums.rank(image_features, 5)
top_artists = ci.artists.rank(image_features, 5)
top_movements = ci.movements.rank(image_features, 5)
top_trendings = ci.trendings.rank(image_features, 5)
top_flavors = ci.flavors.rank(image_features, 5)
medium_ranks = {medium: sim for medium, sim in zip(top_mediums, ci.similarities(image_features, top_mediums))}
artist_ranks = {artist: sim for artist, sim in zip(top_artists, ci.similarities(image_features, top_artists))}
movement_ranks = {movement: sim for movement, sim in zip(top_movements, ci.similarities(image_features, top_movements))}
trending_ranks = {trending: sim for trending, sim in zip(top_trendings, ci.similarities(image_features, top_trendings))}
flavor_ranks = {flavor: sim for flavor, sim in zip(top_flavors, ci.similarities(image_features, top_flavors))}
return medium_ranks, artist_ranks, movement_ranks, trending_ranks, flavor_ranks
def image_to_prompt(image, clip_model_name, mode):
# move selected model to GPU and other model to CPU
if clip_model_name == MODELS[0]:
ci_vith.clip_model = ci_vith.clip_model.to("cpu")
ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
ci = ci_vitl
else:
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
ci = ci_vith
ci.config.blip_num_beams = 64
ci.config.chunk_size = 2048
ci.config.flavor_intermediate_count = 2048 if clip_model_name == MODELS[0] else 1024
image = image.convert('RGB')
if mode == 'best':
prompt = ci.interrogate(image)
elif mode == 'classic':
prompt = ci.interrogate_classic(image)
elif mode == 'fast':
prompt = ci.interrogate_fast(image)
elif mode == 'negative':
prompt = ci.interrogate_negative(image)
return prompt, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
TITLE = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px;">
CLIP Interrogator
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Want to figure out what a good prompt might be to create new images like an existing one?<br>The CLIP Interrogator is here to get you answers!
</p>
<p>You can skip the queue by duplicating this space and upgrading to gpu in settings: <a style='display:inline-block' href='https://huggingface.co/spaces/pharma/CLIP-Interrogator?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>
</div>
"""
ARTICLE = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
<p>
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a>
and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a>
from pixabay.com
</p>
<p>
Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb">Google Colab</a>
</p>
<p>
Has this been helpful to you? Follow me on twitter
<a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a><br>
and check out more tools at my
<a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
</p>
</div>
"""
CSS = """
#col-container {margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
def analyze_tab():
with gr.Column():
with gr.Row():
image = gr.Image(type='pil', label="Image")
model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model')
with gr.Row():
medium = gr.Label(label="Medium", num_top_classes=5)
artist = gr.Label(label="Artist", num_top_classes=5)
movement = gr.Label(label="Movement", num_top_classes=5)
trending = gr.Label(label="Trending", num_top_classes=5)
flavor = gr.Label(label="Flavor", num_top_classes=5)
button = gr.Button("Analyze", api_name="image-analysis")
button.click(image_analysis, inputs=[image, model], outputs=[medium, artist, movement, trending, flavor])
examples=[['example01.jpg', MODELS[0]], ['example02.jpg', MODELS[0]]]
ex = gr.Examples(
examples=examples,
fn=image_analysis,
inputs=[input_image, input_model],
outputs=[medium, artist, movement, trending, flavor],
cache_examples=True,
run_on_click=True
)
ex.dataset.headers = [""]
with gr.Blocks(css=CSS) as block:
with gr.Column(elem_id="col-container"):
gr.HTML(TITLE)
with gr.Tab("Prompt"):
with gr.Row():
input_image = gr.Image(type='pil', elem_id="input-img")
with gr.Column():
input_model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model')
input_mode = gr.Radio(['best', 'fast', 'classic', 'negative'], value='best', label='Mode')
submit_btn = gr.Button("Submit", api_name="image-to-prompt")
output_text = gr.Textbox(label="Output", elem_id="output-txt")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
ex = gr.Examples(
examples=examples,
fn=image_to_prompt,
inputs=[input_image, input_model, input_mode],
outputs=[output_text, share_button, community_icon, loading_icon],
cache_examples=True,
run_on_click=True
)
ex.dataset.headers = [""]
with gr.Tab("Analyze"):
analyze_tab()
gr.HTML(ARTICLE)
submit_btn.click(
fn=image_to_prompt,
inputs=[input_image, input_model, input_mode],
outputs=[output_text, share_button, community_icon, loading_icon]
)
share_button.click(None, [], [], _js=share_js)
block.queue(max_size=64).launch(show_api=False)
|