File size: 10,120 Bytes
95d3029
e900656
 
95d3029
 
5f7a532
 
95d3029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101d8cd
95d3029
 
 
 
101d8cd
95d3029
 
 
 
 
 
69a2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95d3029
69a2249
 
 
 
 
 
 
 
 
 
95d3029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69a2249
95d3029
69a2249
 
95d3029
 
 
 
 
7f0599f
 
 
 
 
 
 
 
 
 
 
 
 
 
101d8cd
7f0599f
810b784
7f0599f
 
95d3029
 
ec4e754
 
 
 
 
 
 
 
 
 
 
 
 
101d8cd
ec4e754
 
 
 
7ac65ca
 
43bc55e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0599f
69a2249
 
 
 
 
 
 
 
 
 
 
bf8293f
a3cd3cd
 
 
bf8293f
 
 
 
 
 
 
 
 
 
 
69a2249
95d3029
7f0599f
95d3029
7f0599f
69a2249
43bc55e
 
 
 
 
e4cca8e
69a2249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0599f
95d3029
7f0599f
95d3029
69a2249
95d3029
 
 
5f7a532
7f0599f
a3cd3cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python3
import gradio as gr
import os
from clip_interrogator import Config, Interrogator
from huggingface_hub import hf_hub_download
from share_btn import community_icon_html, loading_icon_html, share_js

MODELS = ['ViT-L (best for Stable Diffusion 1.*)', 'ViT-H (best for Stable Diffusion 2.*)']

# download preprocessed files
PREPROCESS_FILES = [
    'ViT-H-14_laion2b_s32b_b79k_artists.pkl',
    'ViT-H-14_laion2b_s32b_b79k_flavors.pkl',
    'ViT-H-14_laion2b_s32b_b79k_mediums.pkl',
    'ViT-H-14_laion2b_s32b_b79k_movements.pkl',
    'ViT-H-14_laion2b_s32b_b79k_trendings.pkl',
    'ViT-L-14_openai_artists.pkl',
    'ViT-L-14_openai_flavors.pkl',
    'ViT-L-14_openai_mediums.pkl',
    'ViT-L-14_openai_movements.pkl',
    'ViT-L-14_openai_trendings.pkl',
]
print("Download preprocessed cache files...")
for file in PREPROCESS_FILES:
    path = hf_hub_download(repo_id="pharma/ci-preprocess", filename=file, cache_dir="cache")
    cache_path = os.path.dirname(path)


# load BLIP and ViT-L https://huggingface.co/openai/clip-vit-large-patch14
config = Config(cache_path=cache_path, clip_model_path="cache", clip_model_name="ViT-L-14/openai")
ci_vitl = Interrogator(config)
ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")

# load ViT-H https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K
config.blip_model = ci_vitl.blip_model
config.clip_model_name = "ViT-H-14/laion2b_s32b_b79k"
ci_vith = Interrogator(config)
ci_vith.clip_model = ci_vith.clip_model.to("cpu")


def image_analysis(image, clip_model_name):
    # move selected model to GPU and other model to CPU
    if clip_model_name == MODELS[0]:
        ci_vith.clip_model = ci_vith.clip_model.to("cpu")
        ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
        ci = ci_vitl
    else:
        ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
        ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
        ci = ci_vith

    image = image.convert('RGB')
    image_features = ci.image_to_features(image)

    top_mediums = ci.mediums.rank(image_features, 5)
    top_artists = ci.artists.rank(image_features, 5)
    top_movements = ci.movements.rank(image_features, 5)
    top_trendings = ci.trendings.rank(image_features, 5)
    top_flavors = ci.flavors.rank(image_features, 5)

    medium_ranks = {medium: sim for medium, sim in zip(top_mediums, ci.similarities(image_features, top_mediums))}
    artist_ranks = {artist: sim for artist, sim in zip(top_artists, ci.similarities(image_features, top_artists))}
    movement_ranks = {movement: sim for movement, sim in zip(top_movements, ci.similarities(image_features, top_movements))}
    trending_ranks = {trending: sim for trending, sim in zip(top_trendings, ci.similarities(image_features, top_trendings))}
    flavor_ranks = {flavor: sim for flavor, sim in zip(top_flavors, ci.similarities(image_features, top_flavors))}
    
    return medium_ranks, artist_ranks, movement_ranks, trending_ranks, flavor_ranks


def image_to_prompt(image, clip_model_name, mode):
    # move selected model to GPU and other model to CPU
    if clip_model_name == MODELS[0]:
        ci_vith.clip_model = ci_vith.clip_model.to("cpu")
        ci_vitl.clip_model = ci_vitl.clip_model.to(ci_vitl.device)
        ci = ci_vitl
    else:
        ci_vitl.clip_model = ci_vitl.clip_model.to("cpu")
        ci_vith.clip_model = ci_vith.clip_model.to(ci_vith.device)
        ci = ci_vith

    ci.config.blip_num_beams = 64
    ci.config.chunk_size = 2048
    ci.config.flavor_intermediate_count = 2048 if clip_model_name == MODELS[0] else 1024

    image = image.convert('RGB')
    if mode == 'best':
        prompt = ci.interrogate(image)
    elif mode == 'classic':
        prompt = ci.interrogate_classic(image)
    elif mode == 'fast':
        prompt = ci.interrogate_fast(image)
    elif mode == 'negative':
        prompt = ci.interrogate_negative(image)

    return prompt, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)


TITLE = """
    <div style="text-align: center; max-width: 650px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px;">
            CLIP Interrogator
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Want to figure out what a good prompt might be to create new images like an existing one?<br>The CLIP Interrogator is here to get you answers!
        </p>
        <p>You can skip the queue by duplicating this space and upgrading to gpu in settings: <a style='display:inline-block' href='https://huggingface.co/spaces/pharma/CLIP-Interrogator?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a></p>
    </div>
"""

ARTICLE = """
<div style="text-align: center; max-width: 650px; margin: 0 auto;">
    <p>
    Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a> 
    and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a> 
    from pixabay.com
    </p>

    <p>
    Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb">Google Colab</a>
    </p>

    <p>
    Has this been helpful to you? Follow me on twitter 
    <a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a><br>
    and check out more tools at my
    <a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
    </p>
</div>
"""

CSS = """
    #col-container {margin-left: auto; margin-right: auto;}
    a {text-decoration-line: underline; font-weight: 600;}
    .animate-spin {
        animation: spin 1s linear infinite;
    }
    @keyframes spin {
        from { transform: rotate(0deg); }
        to { transform: rotate(360deg); }
    }
    #share-btn-container {
        display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
    }
    #share-btn {
        all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
    }
    #share-btn * {
        all: unset;
    }
    #share-btn-container div:nth-child(-n+2){
        width: auto !important;
        min-height: 0px !important;
    }
    #share-btn-container .wrap {
        display: none !important;
    }
"""

def analyze_tab():
    with gr.Column():
        with gr.Row():
            image = gr.Image(type='pil', label="Image")
            model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model')
        with gr.Row():
            medium = gr.Label(label="Medium", num_top_classes=5)
            artist = gr.Label(label="Artist", num_top_classes=5)        
            movement = gr.Label(label="Movement", num_top_classes=5)
            trending = gr.Label(label="Trending", num_top_classes=5)
            flavor = gr.Label(label="Flavor", num_top_classes=5)

    button = gr.Button("Analyze", api_name="image-analysis")
    button.click(image_analysis, inputs=[image, model], outputs=[medium, artist, movement, trending, flavor])

    examples=[['example01.jpg', MODELS[0]], ['example02.jpg', MODELS[0]]]
    ex = gr.Examples(
        examples=examples, 
        fn=image_analysis, 
        inputs=[input_image, input_model], 
        outputs=[medium, artist, movement, trending, flavor], 
        cache_examples=True, 
        run_on_click=True
    )
    ex.dataset.headers = [""]


with gr.Blocks(css=CSS) as block:
    with gr.Column(elem_id="col-container"):
        gr.HTML(TITLE)

        with gr.Tab("Prompt"):
            with gr.Row():
                input_image = gr.Image(type='pil', elem_id="input-img")
                with gr.Column():
                    input_model = gr.Dropdown(MODELS, value=MODELS[0], label='CLIP Model')
                    input_mode = gr.Radio(['best', 'fast', 'classic', 'negative'], value='best', label='Mode')
            submit_btn = gr.Button("Submit", api_name="image-to-prompt")
            output_text = gr.Textbox(label="Output", elem_id="output-txt")

            with gr.Group(elem_id="share-btn-container"):
                community_icon = gr.HTML(community_icon_html, visible=False)
                loading_icon = gr.HTML(loading_icon_html, visible=False)
                share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)

            examples=[['example01.jpg', MODELS[0], 'best'], ['example02.jpg', MODELS[0], 'best']]
            ex = gr.Examples(
                examples=examples, 
                fn=image_to_prompt, 
                inputs=[input_image, input_model, input_mode], 
                outputs=[output_text, share_button, community_icon, loading_icon], 
                cache_examples=True, 
                run_on_click=True
            )
            ex.dataset.headers = [""]

        with gr.Tab("Analyze"):
            analyze_tab()
        
        gr.HTML(ARTICLE)

    submit_btn.click(
        fn=image_to_prompt, 
        inputs=[input_image, input_model, input_mode], 
        outputs=[output_text, share_button, community_icon, loading_icon]
    )
    share_button.click(None, [], [], _js=share_js)

block.queue(max_size=64).launch(show_api=False)