Spaces:
Running
on
A10G
Running
on
A10G
File size: 9,461 Bytes
7ac65ca e900656 7ac65ca e900656 7ac65ca e900656 7ac65ca e900656 7ac65ca e900656 7ac65ca e900656 7ac65ca e900656 7ac65ca e900656 7ac65ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import sys
sys.path.append('src/blip')
sys.path.append('src/clip')
import clip
import gradio as gr
import hashlib
import io
import IPython
import ipywidgets as widgets
import math
import numpy as np
import os
import pickle
import requests
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from models.blip import blip_decoder
from PIL import Image
from torch import nn
from torch.nn import functional as F
from tqdm import tqdm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print("Loading BLIP model...")
blip_image_eval_size = 384
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json')
blip_model.eval()
blip_model = blip_model.to(device)
print("Loading CLIP model...")
clip_model_name = 'ViT-L/14'
clip_model, clip_preprocess = clip.load(clip_model_name, device=device)
clip_model.to(device).eval()
chunk_size = 2048
flavor_intermediate_count = 2048
class LabelTable():
def __init__(self, labels, desc):
self.labels = labels
self.embeds = []
hash = hashlib.sha256(",".join(labels).encode()).hexdigest()
os.makedirs('./cache', exist_ok=True)
cache_filepath = f"./cache/{desc}.pkl"
if desc is not None and os.path.exists(cache_filepath):
with open(cache_filepath, 'rb') as f:
data = pickle.load(f)
if data['hash'] == hash:
self.labels = data['labels']
self.embeds = data['embeds']
if len(self.labels) != len(self.embeds):
self.embeds = []
chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size))
for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None):
text_tokens = clip.tokenize(chunk).cuda()
with torch.no_grad():
text_features = clip_model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
text_features = text_features.half().cpu().numpy()
for i in range(text_features.shape[0]):
self.embeds.append(text_features[i])
with open(cache_filepath, 'wb') as f:
pickle.dump({"labels":self.labels, "embeds":self.embeds, "hash":hash}, f)
def _rank(self, image_features, text_embeds, top_count=1):
top_count = min(top_count, len(text_embeds))
similarity = torch.zeros((1, len(text_embeds))).to(device)
text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).float().to(device)
for i in range(image_features.shape[0]):
similarity += (image_features[i].unsqueeze(0) @ text_embeds.T).softmax(dim=-1)
_, top_labels = similarity.cpu().topk(top_count, dim=-1)
return [top_labels[0][i].numpy() for i in range(top_count)]
def rank(self, image_features, top_count=1):
if len(self.labels) <= chunk_size:
tops = self._rank(image_features, self.embeds, top_count=top_count)
return [self.labels[i] for i in tops]
num_chunks = int(math.ceil(len(self.labels)/chunk_size))
keep_per_chunk = int(chunk_size / num_chunks)
top_labels, top_embeds = [], []
for chunk_idx in tqdm(range(num_chunks)):
start = chunk_idx*chunk_size
stop = min(start+chunk_size, len(self.embeds))
tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk)
top_labels.extend([self.labels[start+i] for i in tops])
top_embeds.extend([self.embeds[start+i] for i in tops])
tops = self._rank(image_features, top_embeds, top_count=top_count)
return [top_labels[i] for i in tops]
def generate_caption(pil_image):
gpu_image = T.Compose([
T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])(pil_image).unsqueeze(0).to(device)
with torch.no_grad():
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
return caption[0]
def load_list(filename):
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
items = [line.strip() for line in f.readlines()]
return items
def rank_top(image_features, text_array):
text_tokens = clip.tokenize([text for text in text_array]).cuda()
with torch.no_grad():
text_features = clip_model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = torch.zeros((1, len(text_array)), device=device)
for i in range(image_features.shape[0]):
similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
_, top_labels = similarity.cpu().topk(1, dim=-1)
return text_array[top_labels[0][0].numpy()]
def similarity(image_features, text):
text_tokens = clip.tokenize([text]).cuda()
with torch.no_grad():
text_features = clip_model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
return similarity[0][0]
def interrogate(image):
caption = generate_caption(image)
images = clip_preprocess(image).unsqueeze(0).cuda()
with torch.no_grad():
image_features = clip_model.encode_image(images).float()
image_features /= image_features.norm(dim=-1, keepdim=True)
flaves = flavors.rank(image_features, flavor_intermediate_count)
best_medium = mediums.rank(image_features, 1)[0]
best_artist = artists.rank(image_features, 1)[0]
best_trending = trendings.rank(image_features, 1)[0]
best_movement = movements.rank(image_features, 1)[0]
best_prompt = caption
best_sim = similarity(image_features, best_prompt)
def check(addition):
nonlocal best_prompt, best_sim
prompt = best_prompt + ", " + addition
sim = similarity(image_features, prompt)
if sim > best_sim:
best_sim = sim
best_prompt = prompt
return True
return False
def check_multi_batch(opts):
nonlocal best_prompt, best_sim
prompts = []
for i in range(2**len(opts)):
prompt = best_prompt
for bit in range(len(opts)):
if i & (1 << bit):
prompt += ", " + opts[bit]
prompts.append(prompt)
prompt = rank_top(image_features, prompts)
sim = similarity(image_features, prompt)
if sim > best_sim:
best_sim = sim
best_prompt = prompt
check_multi_batch([best_medium, best_artist, best_trending, best_movement])
extended_flavors = set(flaves)
for _ in tqdm(range(25), desc="Flavor chain"):
try:
best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors])
flave = best[len(best_prompt)+2:]
if not check(flave):
break
extended_flavors.remove(flave)
except:
# exceeded max prompt length
break
return best_prompt
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
trending_list = [site for site in sites]
trending_list.extend(["trending on "+site for site in sites])
trending_list.extend(["featured on "+site for site in sites])
trending_list.extend([site+" contest winner" for site in sites])
raw_artists = load_list('data/artists.txt')
artists = [f"by {a}" for a in raw_artists]
artists.extend([f"inspired by {a}" for a in raw_artists])
artists = LabelTable(artists, "artists")
flavors = LabelTable(load_list('data/flavors.txt'), "flavors")
mediums = LabelTable(load_list('data/mediums.txt'), "mediums")
movements = LabelTable(load_list('data/movements.txt'), "movements")
trendings = LabelTable(trending_list, "trendings")
def inference(image):
return interrogate(image)
inputs = [gr.inputs.Image(type='pil')]
outputs = gr.outputs.Textbox(label="Output")
title = "CLIP Interrogator"
description = "Want to figure out what a good prompt might be to create new images like an existing one? The CLIP Interrogator is here to get you answers!"
article = """
<p>
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a>
and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a>
from pixabay.com
</p>
<p>
Has this been helpful to you? Follow me on twitter
<a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a>
and check out more tools at my
<a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
</p>
"""
gr.Interface(
inference,
inputs,
outputs,
title=title, description=description,
article=article,
examples=[['example01.jpg'], ['example02.jpg']]
).launch(enable_queue=True)
|