Spaces:
Running
on
A10G
Running
on
A10G
import sys | |
sys.path.append('src/blip') | |
sys.path.append('src/clip') | |
import clip | |
import gradio as gr | |
import hashlib | |
import math | |
import numpy as np | |
import os | |
import pickle | |
import torch | |
import torchvision.transforms as T | |
import torchvision.transforms.functional as TF | |
from models.blip import blip_decoder | |
from PIL import Image | |
from torch import nn | |
from torch.nn import functional as F | |
from tqdm import tqdm | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
print("Loading BLIP model...") | |
blip_image_eval_size = 384 | |
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth' | |
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json') | |
blip_model.eval() | |
blip_model = blip_model.to(device) | |
print("Loading CLIP model...") | |
clip_model_name = 'ViT-L/14' # https://huggingface.co/openai/clip-vit-large-patch14 | |
clip_model, clip_preprocess = clip.load(clip_model_name, device=device) | |
clip_model.to(device).eval() | |
chunk_size = 2048 | |
flavor_intermediate_count = 2048 | |
class LabelTable(): | |
def __init__(self, labels, desc): | |
self.labels = labels | |
self.embeds = [] | |
hash = hashlib.sha256(",".join(labels).encode()).hexdigest() | |
os.makedirs('./cache', exist_ok=True) | |
cache_filepath = f"./cache/{desc}.pkl" | |
if desc is not None and os.path.exists(cache_filepath): | |
with open(cache_filepath, 'rb') as f: | |
data = pickle.load(f) | |
if data['hash'] == hash: | |
self.labels = data['labels'] | |
self.embeds = data['embeds'] | |
if len(self.labels) != len(self.embeds): | |
self.embeds = [] | |
chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size)) | |
for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None): | |
text_tokens = clip.tokenize(chunk).to(device) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text_tokens).float() | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
text_features = text_features.half().cpu().numpy() | |
for i in range(text_features.shape[0]): | |
self.embeds.append(text_features[i]) | |
with open(cache_filepath, 'wb') as f: | |
pickle.dump({"labels":self.labels, "embeds":self.embeds, "hash":hash}, f) | |
def _rank(self, image_features, text_embeds, top_count=1): | |
top_count = min(top_count, len(text_embeds)) | |
similarity = torch.zeros((1, len(text_embeds))).to(device) | |
text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).float().to(device) | |
for i in range(image_features.shape[0]): | |
similarity += (image_features[i].unsqueeze(0) @ text_embeds.T).softmax(dim=-1) | |
_, top_labels = similarity.cpu().topk(top_count, dim=-1) | |
return [top_labels[0][i].numpy() for i in range(top_count)] | |
def rank(self, image_features, top_count=1): | |
if len(self.labels) <= chunk_size: | |
tops = self._rank(image_features, self.embeds, top_count=top_count) | |
return [self.labels[i] for i in tops] | |
num_chunks = int(math.ceil(len(self.labels)/chunk_size)) | |
keep_per_chunk = int(chunk_size / num_chunks) | |
top_labels, top_embeds = [], [] | |
for chunk_idx in tqdm(range(num_chunks)): | |
start = chunk_idx*chunk_size | |
stop = min(start+chunk_size, len(self.embeds)) | |
tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk) | |
top_labels.extend([self.labels[start+i] for i in tops]) | |
top_embeds.extend([self.embeds[start+i] for i in tops]) | |
tops = self._rank(image_features, top_embeds, top_count=top_count) | |
return [top_labels[i] for i in tops] | |
def generate_caption(pil_image): | |
gpu_image = T.Compose([ | |
T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) | |
])(pil_image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5) | |
return caption[0] | |
def load_list(filename): | |
with open(filename, 'r', encoding='utf-8', errors='replace') as f: | |
items = [line.strip() for line in f.readlines()] | |
return items | |
def rank_top(image_features, text_array): | |
text_tokens = clip.tokenize([text for text in text_array]).to(device) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text_tokens).float() | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
similarity = torch.zeros((1, len(text_array)), device=device) | |
for i in range(image_features.shape[0]): | |
similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) | |
_, top_labels = similarity.cpu().topk(1, dim=-1) | |
return text_array[top_labels[0][0].numpy()] | |
def similarity(image_features, text): | |
text_tokens = clip.tokenize([text]).to(device) | |
with torch.no_grad(): | |
text_features = clip_model.encode_text(text_tokens).float() | |
text_features /= text_features.norm(dim=-1, keepdim=True) | |
similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T | |
return similarity[0][0] | |
def interrogate(image): | |
caption = generate_caption(image) | |
images = clip_preprocess(image).unsqueeze(0).to(device) | |
with torch.no_grad(): | |
image_features = clip_model.encode_image(images).float() | |
image_features /= image_features.norm(dim=-1, keepdim=True) | |
flaves = flavors.rank(image_features, flavor_intermediate_count) | |
best_medium = mediums.rank(image_features, 1)[0] | |
best_artist = artists.rank(image_features, 1)[0] | |
best_trending = trendings.rank(image_features, 1)[0] | |
best_movement = movements.rank(image_features, 1)[0] | |
best_prompt = caption | |
best_sim = similarity(image_features, best_prompt) | |
def check(addition): | |
nonlocal best_prompt, best_sim | |
prompt = best_prompt + ", " + addition | |
sim = similarity(image_features, prompt) | |
if sim > best_sim: | |
best_sim = sim | |
best_prompt = prompt | |
return True | |
return False | |
def check_multi_batch(opts): | |
nonlocal best_prompt, best_sim | |
prompts = [] | |
for i in range(2**len(opts)): | |
prompt = best_prompt | |
for bit in range(len(opts)): | |
if i & (1 << bit): | |
prompt += ", " + opts[bit] | |
prompts.append(prompt) | |
prompt = rank_top(image_features, prompts) | |
sim = similarity(image_features, prompt) | |
if sim > best_sim: | |
best_sim = sim | |
best_prompt = prompt | |
check_multi_batch([best_medium, best_artist, best_trending, best_movement]) | |
extended_flavors = set(flaves) | |
for _ in tqdm(range(25), desc="Flavor chain"): | |
try: | |
best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors]) | |
flave = best[len(best_prompt)+2:] | |
if not check(flave): | |
break | |
extended_flavors.remove(flave) | |
except: | |
# exceeded max prompt length | |
break | |
return best_prompt | |
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central'] | |
trending_list = [site for site in sites] | |
trending_list.extend(["trending on "+site for site in sites]) | |
trending_list.extend(["featured on "+site for site in sites]) | |
trending_list.extend([site+" contest winner" for site in sites]) | |
raw_artists = load_list('data/artists.txt') | |
artists = [f"by {a}" for a in raw_artists] | |
artists.extend([f"inspired by {a}" for a in raw_artists]) | |
artists = LabelTable(artists, "artists") | |
flavors = LabelTable(load_list('data/flavors.txt'), "flavors") | |
mediums = LabelTable(load_list('data/mediums.txt'), "mediums") | |
movements = LabelTable(load_list('data/movements.txt'), "movements") | |
trendings = LabelTable(trending_list, "trendings") | |
def inference(image): | |
return interrogate(image) | |
inputs = [gr.inputs.Image(type='pil')] | |
outputs = gr.outputs.Textbox(label="Output") | |
title = """ | |
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px;"> | |
CLIP Interrogator | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Want to figure out what a good prompt might be to create new images like an existing one? The CLIP Interrogator is here to get you answers! | |
</p> | |
</div> | |
""" | |
article = """ | |
<p> | |
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a> | |
and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a> | |
from pixabay.com | |
</p> | |
<p> | |
Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb">Google Colab</a> | |
</p> | |
<p> | |
Has this been helpful to you? Follow me on twitter | |
<a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> | |
and check out more tools at my | |
<a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a> | |
</p> | |
""" | |
css = ''' | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
''' | |
with gr.Blocks(css=css) as block: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
input_image = gr.inputs.Image(type='pil') | |
submit_btn = gr.Button("Submit") | |
output_text = gr.outputs.Textbox(label="Output") | |
examples=[['example01.jpg'], ['example02.jpg']] | |
ex = gr.Examples(examples=examples, fn=inference, inputs=input_image, outputs=output_text, cache_examples=True, run_on_click=True) | |
ex.dataset.headers = [""] | |
gr.HTML(article) | |
submit_btn.click(fn=inference, inputs=input_image, outputs=output_text) | |
block.queue(max_size=32).launch(show_api=False) | |