|
|
|
import os
|
|
import re
|
|
import utils
|
|
import commons
|
|
import json
|
|
import gradio as gr
|
|
from models import SynthesizerTrn
|
|
from text import text_to_sequence
|
|
from torch import no_grad, LongTensor
|
|
import logging
|
|
logging.getLogger('numba').setLevel(logging.WARNING)
|
|
hps_ms = utils.get_hparams_from_file(r'config/config.json')
|
|
|
|
def get_text(text, hps):
|
|
text_norm, clean_text = text_to_sequence(text, hps.symbols, hps.data.text_cleaners)
|
|
if hps.data.add_blank:
|
|
text_norm = commons.intersperse(text_norm, 0)
|
|
text_norm = LongTensor(text_norm)
|
|
return text_norm, clean_text
|
|
|
|
def create_tts_fn(net_g_ms, speaker_id):
|
|
def tts_fn(text, language, noise_scale, noise_scale_w, length_scale):
|
|
text = text.replace('\n', ' ').replace('\r', '').replace(" ", "")
|
|
text_len = len(re.sub("\[([A-Z]{2})\]", "", text))
|
|
max_len = 150
|
|
if text_len > max_len:
|
|
return "Error: Text is too long", None
|
|
if language == 0:
|
|
text = f"[ZH]{text}[ZH]"
|
|
elif language == 1:
|
|
text = f"[JA]{text}[JA]"
|
|
else:
|
|
text = f"{text}"
|
|
stn_tst, clean_text = get_text(text, hps_ms)
|
|
with no_grad():
|
|
x_tst = stn_tst.unsqueeze(0)
|
|
x_tst_lengths = LongTensor([stn_tst.size(0)])
|
|
sid = LongTensor([speaker_id])
|
|
audio = net_g_ms.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w,
|
|
length_scale=length_scale)[0][0, 0].data.float().numpy()
|
|
|
|
return "Success", (22050, audio)
|
|
return tts_fn
|
|
|
|
def change_lang(language):
|
|
if language == 0:
|
|
return 0.6, 0.668, 1.2
|
|
else:
|
|
return 0.6, 0.668, 1
|
|
|
|
download_audio_js = """
|
|
() =>{{
|
|
let root = document.querySelector("body > gradio-app");
|
|
if (root.shadowRoot != null)
|
|
root = root.shadowRoot;
|
|
let audio = root.querySelector("#tts-audio").querySelector("audio");
|
|
let text = root.querySelector("#input-text").querySelector("textarea");
|
|
if (audio == undefined)
|
|
return;
|
|
text = text.value;
|
|
if (text == undefined)
|
|
text = Math.floor(Math.random()*100000000);
|
|
audio = audio.src;
|
|
let oA = document.createElement("a");
|
|
oA.download = text.substr(0, 20)+'.wav';
|
|
oA.href = audio;
|
|
document.body.appendChild(oA);
|
|
oA.click();
|
|
oA.remove();
|
|
}}
|
|
"""
|
|
|
|
if __name__ == '__main__':
|
|
models = []
|
|
with open("pretrained_models/info.json", "r", encoding="utf-8") as f:
|
|
models_info = json.load(f)
|
|
for i, info in models_info.items():
|
|
net_g_ms = SynthesizerTrn(
|
|
len(hps_ms.symbols),
|
|
hps_ms.data.filter_length // 2 + 1,
|
|
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
|
n_speakers=hps_ms.data.n_speakers,
|
|
**hps_ms.model)
|
|
_ = net_g_ms.eval()
|
|
sid = info['sid']
|
|
name_en = info['name_en']
|
|
name_zh = info['name_zh']
|
|
title = info['title']
|
|
cover = f"pretrained_models/{i}/{info['cover']}"
|
|
utils.load_checkpoint(f'pretrained_models/{i}/{i}.pth', net_g_ms, None)
|
|
models.append((sid, name_en, name_zh, title, cover, net_g_ms, create_tts_fn(net_g_ms, sid)))
|
|
with gr.Blocks() as app:
|
|
gr.Markdown(
|
|
"# <center> vits-models\n"
|
|
"<div align='center'>主要有赛马娘,原神中文,原神日语,崩坏3的音色</div>"
|
|
'<div align="center"><a><font color="#dd0000">结果有随机性,语调可能很奇怪,可多次生成取最佳效果</font></a></div>'
|
|
'<div align="center"><a><font color="#dd0000">标点符号会影响生成的结果</font></a></div>'
|
|
)
|
|
|
|
with gr.Tabs():
|
|
with gr.TabItem("EN"):
|
|
for (sid, name_en, name_zh, title, cover, net_g_ms, tts_fn) in models:
|
|
with gr.TabItem(name_en):
|
|
with gr.Row():
|
|
gr.Markdown(
|
|
'<div align="center">'
|
|
f'<a><strong>{title}</strong></a>'
|
|
f'<img src="file/{cover}">' if cover else ""
|
|
'</div>'
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_text = gr.Textbox(label="Text (100 words limitation)", lines=5, value="先生。今日も全力であなたをアシストしますね。", elem_id=f"input-text")
|
|
lang = gr.Dropdown(label="Language", choices=["Chinese", "Japanese", "Mix(wrap the Chinese text with [ZH][ZH], wrap the Japanese text with [JA][JA])"],
|
|
type="index", value="Japanese")
|
|
btn = gr.Button(value="Generate")
|
|
with gr.Row():
|
|
ns = gr.Slider(label="noise_scale", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
|
|
nsw = gr.Slider(label="noise_scale_w", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
|
|
ls = gr.Slider(label="length_scale", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
|
|
with gr.Column():
|
|
o1 = gr.Textbox(label="Output Message")
|
|
o2 = gr.Audio(label="Output Audio", elem_id=f"tts-audio")
|
|
download = gr.Button("Download Audio")
|
|
btn.click(tts_fn, inputs=[input_text, lang, ns, nsw, ls], outputs=[o1, o2])
|
|
download.click(None, [], [], _js=download_audio_js.format())
|
|
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
|
|
with gr.TabItem("中文"):
|
|
for (sid, name_en, name_zh, title, cover, net_g_ms, tts_fn) in models:
|
|
with gr.TabItem(name_zh):
|
|
with gr.Row():
|
|
gr.Markdown(
|
|
'<div align="center">'
|
|
f'<a><strong>{title}</strong></a>'
|
|
f'<img src="file/{cover}">' if cover else ""
|
|
'</div>'
|
|
)
|
|
with gr.Row():
|
|
with gr.Column():
|
|
input_text = gr.Textbox(label="文本 (100字上限)", lines=5, value="先生。今日も全力であなたをアシストしますね。", elem_id=f"input-text")
|
|
lang = gr.Dropdown(label="语言", choices=["中文", "日语", "中日混合(中文用[ZH][ZH]包裹起来,日文用[JA][JA]包裹起来)"],
|
|
type="index", value="日语")
|
|
btn = gr.Button(value="生成")
|
|
with gr.Row():
|
|
ns = gr.Slider(label="控制感情变化程度", minimum=0.1, maximum=1.0, step=0.1, value=0.6, interactive=True)
|
|
nsw = gr.Slider(label="控制音素发音长度", minimum=0.1, maximum=1.0, step=0.1, value=0.668, interactive=True)
|
|
ls = gr.Slider(label="控制整体语速", minimum=0.1, maximum=2.0, step=0.1, value=1, interactive=True)
|
|
with gr.Column():
|
|
o1 = gr.Textbox(label="输出信息")
|
|
o2 = gr.Audio(label="输出音频", elem_id=f"tts-audio")
|
|
download = gr.Button("下载音频")
|
|
btn.click(tts_fn, inputs=[input_text, lang, ns, nsw, ls], outputs=[o1, o2])
|
|
download.click(None, [], [], _js=download_audio_js.format())
|
|
lang.change(change_lang, inputs=[lang], outputs=[ns, nsw, ls])
|
|
app.queue(concurrency_count=1).launch()
|
|
|