|
import os |
|
import gradio as gr |
|
import requests |
|
import langid |
|
import base64 |
|
import json |
|
import time |
|
import re |
|
import hashlib |
|
import hash_code_for_cached_output |
|
|
|
|
|
API_URL = os.environ.get("API_URL") |
|
supported_languages = ['zh', 'en', 'ja', 'ko', 'es', 'fr'] |
|
supported_styles = { |
|
'zh': "zh_default", |
|
'en': [ |
|
"en_default", |
|
"en_us", |
|
"en_br", |
|
"en_au", |
|
"en_in" |
|
], |
|
"es": "es_default", |
|
"fr": "fr_default", |
|
"ja": "jp_default", |
|
"ko": "kr_default" |
|
} |
|
|
|
output_dir = 'outputs' |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
def audio_to_base64(audio_file): |
|
with open(audio_file, "rb") as audio_file: |
|
audio_data = audio_file.read() |
|
base64_data = base64.b64encode(audio_data).decode("utf-8") |
|
return base64_data |
|
|
|
def count_chars_words(sentence): |
|
segments = re.findall(r'[\u4e00-\u9fa5]+|\w+', sentence) |
|
|
|
char_count = 0 |
|
word_count = 0 |
|
for segment in segments: |
|
if re.match(r'[\u4e00-\u9fa5]+', segment): |
|
char_count += len(segment) |
|
else: |
|
word_count += len(segment.split()) |
|
return char_count + word_count |
|
|
|
def predict(prompt, style, audio_file_pth, speed, agree): |
|
|
|
text_hint = '' |
|
|
|
if agree == False: |
|
text_hint += '[ERROR] Please accept the Terms & Condition!\n' |
|
gr.Warning("Please accept the Terms & Condition!") |
|
return ( |
|
text_hint, |
|
None, |
|
None, |
|
) |
|
|
|
|
|
|
|
|
|
cached_outputs = { |
|
"d0f5806f6e_60565a5c20_en_us" : "cached_outputs/0.wav", |
|
"d0f5806f6e_420ab8211d_en_us" : "cached_outputs/1.wav", |
|
"6e8a024342_0f96bf44f5_es_default" : "cached_outputs/2.wav", |
|
"54ad3237d7_3fef5adc6f_zh_default" : "cached_outputs/3.wav", |
|
"8190e911f8_9897b60a4e_jp_default" : "cached_outputs/4.wav" |
|
} |
|
unique_code = hash_code_for_cached_output.get_unique_code(audio_file_pth, style, prompt) |
|
if unique_code in list(cached_outputs.keys()): |
|
return ( |
|
'We get the cached output for you, since you are try to generating an example cloning.', |
|
cached_outputs[unique_code], |
|
audio_file_pth, |
|
) |
|
|
|
|
|
language_predicted = langid.classify(prompt)[0].strip() |
|
print(f"Detected language:{language_predicted}") |
|
|
|
|
|
if language_predicted not in supported_languages: |
|
text_hint += f"[ERROR] The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}\n" |
|
gr.Warning( |
|
f"The detected language {language_predicted} for your input text is not in our Supported Languages: {supported_languages}" |
|
) |
|
|
|
return ( |
|
text_hint, |
|
None, |
|
None, |
|
) |
|
|
|
|
|
if style not in supported_styles[language_predicted]: |
|
text_hint += f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior.\n" |
|
gr.Warning(f"[Warming] The style {style} is not supported for detected language {language_predicted}. For language {language_predicted}, we support styles: {supported_styles[language_predicted]}. Using the wrong style may result in unexpected behavior.") |
|
|
|
prompt_length = count_chars_words(prompt) |
|
|
|
speaker_wav = audio_file_pth |
|
|
|
if prompt_length < 2: |
|
text_hint += f"[ERROR] Please give a longer prompt text \n" |
|
gr.Warning("Please give a longer prompt text") |
|
return ( |
|
text_hint, |
|
None, |
|
None, |
|
) |
|
if prompt_length > 50: |
|
text_hint += f"[ERROR] Text length limited to 50 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749 \n" |
|
gr.Warning( |
|
"Text length limited to 50 words for this demo, please try shorter text. You can clone our open-source repo or try it on our website https://app.myshell.ai/robot-workshop/widget/174760057433406749" |
|
) |
|
return ( |
|
text_hint, |
|
None, |
|
None, |
|
) |
|
|
|
save_path = f'{output_dir}/output.wav' |
|
speaker_audio_base64 = audio_to_base64(speaker_wav) |
|
if style == 'en_us': |
|
style = 'en_newest' |
|
data = { |
|
"text": prompt, |
|
"reference_speaker": speaker_audio_base64, |
|
"language": style, |
|
"speed": speed |
|
} |
|
|
|
start = time.time() |
|
|
|
response = requests.post(API_URL, json=data, timeout=60) |
|
print(f'Get response successfully within {time.time() - start}') |
|
|
|
|
|
if response.status_code == 200: |
|
try: |
|
json_data = json.loads(response.content) |
|
text_hint += f"[ERROR] {json_data['error']} \n" |
|
gr.Warning( |
|
f"[ERROR] {json_data['error']} \n" |
|
) |
|
return ( |
|
text_hint, |
|
None, |
|
None, |
|
) |
|
except: |
|
with open(save_path, 'wb') as f: |
|
f.write(response.content) |
|
else: |
|
text_hint += f"[HTTP ERROR] {response.status_code} - {response.text} \n" |
|
gr.Warning( |
|
f"[HTTP ERROR] {response.status_code} - {response.text} \n" |
|
) |
|
return ( |
|
text_hint, |
|
None, |
|
None, |
|
) |
|
text_hint += f'''Get response successfully \n''' |
|
return ( |
|
text_hint, |
|
save_path, |
|
speaker_wav, |
|
) |
|
|
|
|
|
title = "MyShell OpenVoice V2" |
|
|
|
description = """ |
|
In December 2023, we released [OpenVoice V1](https://huggingface.co/spaces/myshell-ai/OpenVoice), an instant voice cloning approach that replicates a speaker's voice and generates speech in multiple languages using only a short audio clip. OpenVoice V1 enables granular control over voice styles, replicates the tone color of the reference speaker and achieves zero-shot cross-lingual voice cloning. |
|
|
|
In April 2024, we released **OpenVoice V2**, which includes all features in V1 and has: |
|
|
|
- **Better Audio Quality**. OpenVoice V2 adopts a different training strategy that delivers better audio quality. |
|
|
|
- **Native Multi-lingual Support**. English, Spanish, French, Chinese, Japanese and Korean are natively supported in OpenVoice V2. |
|
|
|
- **Free Commercial Use**. Starting from April 2024, both V2 and V1 are released under MIT License. Free for commercial use. |
|
|
|
""" |
|
|
|
markdown_table = """ |
|
<div align="center" style="margin-bottom: 10px;"> |
|
|
|
| | | | |
|
| :-----------: | :-----------: | :-----------: | |
|
| **OpenSource Repo** | **Project Page** | **Join the Community** | |
|
| <div style='text-align: center;'><a style="display:inline-block,align:center" href='https://github.com/myshell-ai/OpenVoice'><img src='https://img.shields.io/github/stars/myshell-ai/OpenVoice?style=social' /></a></div> | [OpenVoice](https://research.myshell.ai/open-voice) | [![Discord](https://img.shields.io/discord/1122227993805336617?color=%239B59B6&label=%20Discord%20)](https://discord.gg/myshell) | |
|
|
|
</div> |
|
""" |
|
|
|
markdown_table_v2 = """ |
|
<div align="center" style="margin-bottom: 2px;"> |
|
|
|
| | | | | |
|
| :-----------: | :-----------: | :-----------: | :-----------: | |
|
| **Github Repo** | <div style='text-align: center;'><a style="display:inline-block,align:center" href='https://github.com/myshell-ai/OpenVoice'><img src='https://img.shields.io/github/stars/myshell-ai/OpenVoice?style=social' /></a></div> | **Project Page** | [OpenVoice](https://research.myshell.ai/open-voice) | |
|
|
|
| | | |
|
| :-----------: | :-----------: | |
|
**Join the Community** | [![Discord](https://img.shields.io/discord/1122227993805336617?color=%239B59B6&label=%20Discord%20)](https://discord.gg/myshell) | |
|
|
|
</div> |
|
""" |
|
content = """ |
|
<div> |
|
<strong>If the generated voice does not sound like the reference voice, please refer to <a href='https://github.com/myshell-ai/OpenVoice/blob/main/docs/QA.md'>this QnA</a>.</strong> <strong>If you want to deploy the model by yourself and perform inference, please refer to <a href='https://github.com/myshell-ai/OpenVoice/blob/main/demo_part3.ipynb'>this jupyter notebook</a>.</strong> |
|
</div> |
|
""" |
|
wrapped_markdown_content = f"<div style='border: 1px solid #000; padding: 10px;'>{content}</div>" |
|
|
|
|
|
examples = [ |
|
[ |
|
"Did you ever hear a folk tale about a giant turtle?", |
|
'en_us', |
|
"examples/speaker0.mp3", |
|
True, |
|
],[ |
|
"El resplandor del sol acaricia las olas, pintando el cielo con una paleta deslumbrante.", |
|
'es_default', |
|
"examples/speaker1.mp3", |
|
True, |
|
],[ |
|
"我最近在学习machine learning,希望能够在未来的artificial intelligence领域有所建树。", |
|
'zh_default', |
|
"examples/speaker2.mp3", |
|
True, |
|
],[ |
|
"彼は毎朝ジョギングをして体を健康に保っています。", |
|
'jp_default', |
|
"examples/speaker3.mp3", |
|
True, |
|
], |
|
] |
|
|
|
with gr.Blocks(analytics_enabled=False) as demo: |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
gr.Markdown( |
|
""" |
|
## <img src="https://huggingface.co/spaces/myshell-ai/OpenVoice/raw/main/logo.jpg" height="40"/> |
|
""" |
|
) |
|
with gr.Row(): |
|
gr.Markdown(markdown_table_v2) |
|
with gr.Row(): |
|
gr.Markdown(description) |
|
with gr.Column(): |
|
gr.Video('./openvoicev2.mp4', autoplay=True) |
|
|
|
with gr.Row(): |
|
gr.HTML(wrapped_markdown_content) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_text_gr = gr.Textbox( |
|
label="Text Prompt", |
|
info="One or two sentences at a time is better. Up to 200 text characters.", |
|
value="The bustling city square bustled with street performers, tourists, and local vendors.", |
|
) |
|
style_gr = gr.Dropdown( |
|
label="Style", |
|
info="Select a style of output audio for the synthesised speech. (Chinese only support 'default' now)", |
|
choices=["en_default", "en_us", "en_br", "en_au", "en_in", "es_default", "fr_default", "jp_default", "zh_default", "kr_default",], |
|
max_choices=1, |
|
value="en_us", |
|
) |
|
ref_gr = gr.Audio( |
|
label="Reference Audio", |
|
info="Click on the ✎ button to upload your own target speaker audio", |
|
type="filepath", |
|
value="examples/speaker0.mp3", |
|
) |
|
tos_gr = gr.Checkbox( |
|
label="Agree", |
|
value=False, |
|
info="I agree to the terms of the MIT license-: https://github.com/myshell-ai/OpenVoice/blob/main/LICENSE", |
|
) |
|
|
|
tts_button = gr.Button("Send", elem_id="send-btn", visible=True) |
|
|
|
|
|
with gr.Column(): |
|
out_text_gr = gr.Text(label="Info") |
|
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True) |
|
ref_audio_gr = gr.Audio(label="Reference Audio Used") |
|
|
|
gr.Examples(examples, |
|
label="Examples", |
|
inputs=[input_text_gr, style_gr, ref_gr, tos_gr], |
|
outputs=[out_text_gr, audio_gr, ref_audio_gr], |
|
fn=predict, |
|
cache_examples=False,) |
|
tts_button.click(predict, [input_text_gr, style_gr, ref_gr, tos_gr], outputs=[out_text_gr, audio_gr, ref_audio_gr]) |
|
|
|
demo.queue(concurrency_count=6) |
|
demo.launch(debug=True, show_api=True) |