File size: 4,002 Bytes
5f5fb32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
use crate::bits::BitBoard;
use pyo3::prelude::*;
use std::cmp::Ordering::*;
const PLAYERS: [char; 2] = ['B', 'W'];
#[pyclass]
#[derive(Clone)]
pub struct Board {
pub board: BitBoard,
pub current_player: usize, // 0 or 1
#[pyo3(get)]
pub state: State,
}
#[pyclass(get_all)]
#[derive(Clone, Debug, PartialEq)]
pub struct State {
pub player: char,
pub ended: bool,
pub black_score: i32,
pub white_score: i32,
pub cells: Vec<char>,
pub can_move: bool,
}
#[pymethods]
impl State {
fn __repr__(&self) -> String {
format!("{:?}", self)
}
}
#[pymethods]
impl Board {
#[staticmethod]
pub fn default() -> Self {
let board = BitBoard::default();
let state = Self::compute_state(&board, 0);
Self {
board,
current_player: 0,
state,
}
}
pub fn available_moves(&self) -> Vec<usize> {
let mask = self.board.available_moves();
(0..64).filter(|i| mask >> i & 1 == 1).collect()
}
pub fn pass_move(&mut self) -> State {
self.board = self.board.pass_move();
self.current_player = 1 - self.current_player;
self.state = Self::compute_state(&self.board, self.current_player);
self.state.clone()
}
pub fn make_move(&mut self, place: usize) -> State {
let next = self.board.make_move(place).unwrap();
self.current_player = 1 - self.current_player;
self.board = next;
self.state = Self::compute_state(&self.board, self.current_player);
self.state.clone()
}
pub fn __repr__(&self) -> String {
let state = &self.state;
let mut s = String::new();
for (i, &c) in state.cells.iter().enumerate() {
if i % 8 == 0 {
s.push('\n')
}
s.push(c);
}
if state.ended {
s.push_str(match state.black_score.cmp(&state.white_score) {
Equal => "Game draw!",
Less => "White won!",
Greater => "Black won!",
});
} else {
s.push_str(&format!(
"\n{} to play. Available moves: {:?}",
PLAYERS[self.current_player],
self.available_moves()
));
}
s
}
}
impl Board {
fn compute_state(board: &BitBoard, current_player: usize) -> State {
let (cnt0, cnt1) = board.count();
let moves = board.available_moves();
let cells: Vec<_> = (0..64)
.map(
|i| match (board.0 >> i & 1, board.1 >> i & 1, moves >> i & 1) {
(1, 0, 0) => PLAYERS[current_player],
(0, 1, 0) => PLAYERS[1 - current_player],
(0, 0, 1) => '?',
(0, 0, 0) => '.',
(_, _, _) => unreachable!(),
},
)
.collect();
let ended = moves == 0 && board.pass_move().available_moves() == 0;
let player = PLAYERS[current_player];
State {
player,
ended,
black_score: if player == 'B' { cnt0 } else { cnt1 },
white_score: if player == 'W' { cnt0 } else { cnt1 },
cells,
can_move: moves != 0,
}
}
}
#[cfg(test)]
mod tests {
use super::Board;
#[test]
fn default_test() {
let mut b = Board::default();
assert_eq!(b.available_moves(), &[19, 26, 37, 44]);
b.make_move(44);
// assert_eq!(b.make_move(44), new(44, 'B', vec![36], 4, 1));
assert_eq!(b.current_player, 1);
assert_eq!(b.available_moves(), &[29, 43, 45]);
b.make_move(29);
// assert_eq!(b.make_move(29), new(29, 'W', vec![28], 3, 3));
assert_eq!(b.current_player, 0);
assert_eq!(b.__repr__(), "\n........\n........\n..?????.\n...WWW..\n...BB...\n....B...\n........\n........\nB to play. Available moves: [18, 19, 20, 21, 22]");
}
}
|