Spaces:
Runtime error
Runtime error
File size: 13,811 Bytes
6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 6c8898d a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d f20f8a7 6e74145 a40a80d 6e74145 a40a80d 6e74145 a40a80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import gradio as gr
import torch
import itertools
import pandas as pd
import spaces
import random
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
from sklearn.metrics import pairwise_distances
from collections import Counter
from itertools import chain
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import math
model_name = 'philipp-zettl/t5-small-long-qa'
qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model_name = 'philipp-zettl/t5-small-qg'
qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small')
embedding_model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
embedding_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
# Move only the student model to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
qa_model = qa_model.to(device)
qg_model = qg_model.to(device)
embedding_model = embedding_model.to(device)
max_questions = 1
max_answers = 1
max_elem_value = 100
def ngrams(sequence, n):
return [tuple(sequence[i:i+n]) for i in range(len(sequence)-n+1)]
def count_ngrams(sequence, max_n):
counts = Counter()
for n in range(1, max_n + 1):
counts.update(ngrams(sequence, n))
return counts
def self_bleu(outputs):
smoothing_function = SmoothingFunction().method1
scores = []
for i in range(len(outputs)):
references = outputs[:i] + outputs[i+1:]
# Avoid calculating BLEU score for empty references
if references:
scores.append(sentence_bleu(references, outputs[i], smoothing_function=smoothing_function))
# If all references are empty, return a default value
if not scores:
return 0
return sum(scores) / len(scores)
def dist_n(outputs, n):
all_ngrams = list(chain(*[ngrams(output, n) for output in outputs]))
unique_ngrams = set(all_ngrams)
return len(unique_ngrams) / len(all_ngrams) if all_ngrams else 0
def perplexity(model, tokenizer, texts):
encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
max_length = model.config.n_positions
stride = 512
lls = []
for i in range(0, encodings.input_ids.size(1), stride):
begin_loc = max(i + stride - max_length, 0)
end_loc = i + stride
trg_len = end_loc - i
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(model.device)
target_ids = input_ids.clone()
target_ids[:, :-trg_len] = -100
with torch.no_grad():
outputs = model(input_ids, labels=target_ids)
log_likelihood = outputs.loss * trg_len
lls.append(log_likelihood)
ppl = torch.exp(torch.stack(lls).sum() / end_loc)
return ppl.item()
def embedding_similarity(inputs, outputs):
global embedding_model, embedding_tokenizer, device
def embed(texts):
inputs = embedding_tokenizer(texts, return_tensors='pt', padding=True, truncation=True).to(device)
with torch.no_grad():
outputs = embedding_model(**inputs)
return outputs.last_hidden_state.mean(dim=1).cpu().numpy()
input_embeddings = embed(inputs)
output_embeddings = embed(outputs)
similarities = pairwise_distances(input_embeddings, output_embeddings, metric='cosine')
return sum(similarities) / len(similarities)
def js_divergence(p, q):
def kl_divergence(p, q):
return sum(p[i] * math.log(p[i] / q[i]) for i in range(len(p)) if p[i] != 0 and q[i] != 0)
p_norm = [float(i)/sum(p) for i in p]
q_norm = [float(i)/sum(q) for i in q]
m = [(p_norm[i] + q_norm[i]) / 2 for i in range(len(p_norm))]
return (kl_divergence(p_norm, m) + kl_divergence(q_norm, m)) / 2
def evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=85):
generated_outputs = []
for input_text in eval_data:
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(
input_ids,
num_beams=num_beams,
num_beam_groups=num_beam_groups,
diversity_penalty=1.0,
max_new_tokens=max_length,
)
decoded_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
generated_outputs.append(decoded_text.split())
# Self-BLEU for diversity
diversity_score = self_bleu(generated_outputs)
# Dist-1 and Dist-2 for diversity
dist1 = dist_n(generated_outputs, 1)
dist2 = dist_n(generated_outputs, 2)
# Perplexity for fluency and relevance
fluency_score = perplexity(model, tokenizer, [" ".join(output) for output in generated_outputs])
# Embedding similarity for contextual relevance
contextual_score = embedding_similarity(eval_data, [" ".join(output) for output in generated_outputs])
# Jensen-Shannon Divergence for distribution similarity
generated_ngrams = count_ngrams(list(chain(*generated_outputs)), 4)
reference_ngrams = count_ngrams(list(chain(*[tokenizer.tokenize(text) for text in eval_data])), 4)
all_ngrams = set(generated_ngrams.keys()).union(set(reference_ngrams.keys()))
p = [generated_ngrams[ngram] for ngram in all_ngrams]
q = [reference_ngrams[ngram] for ngram in all_ngrams]
jsd_score = js_divergence(p, q)
return {
"diversity_score": diversity_score,
"dist1": dist1,
"dist2": dist2,
"fluency_score": fluency_score,
"contextual_score": contextual_score,
"jsd_score": jsd_score
}
def find_best_parameters(eval_data, model, tokenizer, max_length=85):
# Parameter ranges
parameter_map = {
2: [2],
4: [2],
6: [2], # 6x3 == 4x2
8: [2], # 8x4 == 6x3 == 4x2
10: [2], # 10x5 == 8x4 == 6x3 == 4x2
}
# Find the best parameters
best_score = -float('inf')
best_params = None
for num_beams in parameter_map.keys():
for num_beam_groups in parameter_map[num_beams]:
if num_beam_groups > num_beams:
continue # num_beam_groups should not be greater than num_beams
scores = evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=max_length)
# Combine scores to determine the best parameters
combined_score = (scores['dist1'] + scores['dist2'] - scores['fluency_score'] + scores['contextual_score'] - scores['jsd_score']).mean()
print(f"num_beams={num_beams}, num_beam_groups={num_beam_groups}, avg combined score={combined_score}")
if combined_score > best_score:
best_score = combined_score
best_params = (num_beams, num_beam_groups)
print(f"Best parameters: num_beams={best_params[0]}, num_beam_groups={best_params[1]} with combined score={best_score}")
return best_params
def run_model(inputs, tokenizer, model, num_beams=2, num_beam_groups=2, temperature=0.5, num_return_sequences=1, max_length=85):
all_outputs = []
torch.manual_seed(42069)
for input_text in inputs:
model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True)
input_ids = torch.tensor(model_inputs['input_ids']).to(device)
for sample in input_ids:
sample_outputs = []
with torch.no_grad():
sample_output = model.generate(
input_ids[:1],
max_length=max_length,
#temperature=temperature,
#do_sample=True,
num_return_sequences=num_return_sequences,
low_memory=True,
#top_p=temperature,
#num_beams=max(2, num_return_sequences),
use_cache=True,
# Contrastive search
#penalty_alpha=0.6,
#top_k=4,
# Multi-nomial sampling
#do_sample=True,
#num_beams=1,
# Beam search
#num_beams=5,
# Beam search multinomial sampling
#num_beams=5,
#do_sample=True,
# Diverse Beam search decoding
num_beams=max(2, num_return_sequences),
num_beam_groups=max(2, num_return_sequences),
diversity_penalty=temperature,
#do_sample=True,
)
for i, sample_output in enumerate(sample_output):
sample_output = sample_output.unsqueeze(0)
sample_output = tokenizer.decode(sample_output[0], skip_special_tokens=True)
sample_outputs.append(sample_output)
all_outputs.append(sample_outputs)
return all_outputs
@spaces.GPU
def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1, max_length=85):
inputs = [
f'context: {content}'
]
question = run_model(
inputs,
tokenizer,
qg_model,
num_beams=num_return_sequences_qg,
num_beam_groups=num_return_sequences_qg,
temperature=temperature_qg,
num_return_sequences=num_return_sequences_qg,
max_length=max_length
)
q_params = find_best_parameters(list(chain.from_iterable(question)), qg_model, tokenizer, max_length=max_length)
question = run_model(
inputs,
tokenizer,
qg_model,
num_beams=q_params[0],
num_beam_groups=q_params[1],
temperature=temperature_qg,
num_return_sequences=num_return_sequences_qg,
max_length=max_length
)
inputs = list(chain.from_iterable([
[f'question: {q} context: {content}' for q in q_set] for q_set in question
]))
answer = run_model(
inputs,
tokenizer,
qa_model,
num_beams=num_return_sequences_qa,
num_beam_groups=num_return_sequences_qa,
temperature=temperature_qa,
num_return_sequences=num_return_sequences_qa,
max_length=max_length
)
questions = list(chain.from_iterable(question))
answers = list(chain.from_iterable(answer))
results = []
for idx, ans in enumerate(answers):
results.append({'question': questions[idx % num_return_sequences_qg], 'answer': ans})
return results
def variable_outputs(k, max_elems=10):
global max_elem_value
k = int(k)
return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems, max_elem_value)- k)
def set_outputs(content, max_elems=10):
c = eval(content)
print('received content: ', c)
return [gr.Text(value=t, visible=True) for t in c] + [gr.Text(visible=False)] * (max(max_elems, 10) - len(c))
def create_file_download(qnas):
with open('qnas.tsv', 'w') as f:
for idx, qna in qnas.iterrows():
f.write(qna['Question'] + '\t' + qna['Answer'])
if idx < len(qnas) - 1:
f.write('\n')
return 'qnas.tsv'
with gr.Blocks(css='.hidden_input {display: none;}') as demo:
with gr.Row(equal_height=True):
gr.Markdown(
"""
# QA-Generator
A combination of fine-tuned flan-T5(-small) models chained into sequence
to generate:
A) a versatile set of questions
B) an accurate set of matching answers
according to a given piece of text content.
The idea is simple:
1. Add your content
2. Select the amount of questions you want to generate
2.2 (optional) Select the amount of answers you want to generate per goven question
3. Press generate
4. ???
5. Profit
If you're satisfied with the generated data set, you can export it as TSV
to edit or import it into your favourite tool.
""")
with gr.Row(equal_height=True):
with gr.Group("Content"):
content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000)
with gr.Group("Settings"):
temperature_qg = gr.Slider(label='Temperature QG', value=0.2, minimum=0, maximum=1, step=0.01)
temperature_qa = gr.Slider(label='Temperature QA', value=0.5, minimum=0, maximum=1, step=0.01)
max_length = gr.Number(label='Max Length', value=85, minimum=1, step=1, maximum=512)
num_return_sequences_qg = gr.Number(label='Number Questions', value=max_questions, minimum=1, step=1, maximum=max(max_questions, max_elem_value))
num_return_sequences_qa = gr.Number(label="Number Answers", value=max_answers, minimum=1, step=1, maximum=max(max_questions, max_elem_value))
with gr.Row():
gen_btn = gr.Button("Generate")
@gr.render(
inputs=[
content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
max_length
],
triggers=[gen_btn.click]
)
def render_results(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa, max_length):
qnas = gen(
content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
max_length
)
df = gr.Dataframe(
value=[u.values() for u in qnas],
headers=['Question', 'Answer'],
col_count=2,
wrap=True
)
pd_df = pd.DataFrame([u.values() for u in qnas], columns=['Question', 'Answer'])
download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df))
demo.launch()
|