File size: 13,811 Bytes
6e74145
 
 
 
a40a80d
 
 
 
 
 
 
 
6e74145
 
 
 
 
 
 
a40a80d
 
 
6e74145
 
 
 
a40a80d
6e74145
 
 
a40a80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e74145
a40a80d
 
 
6e74145
a40a80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e74145
a40a80d
6e74145
 
 
 
 
 
 
 
a40a80d
 
 
6e74145
 
a40a80d
 
6e74145
a40a80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e74145
 
 
 
 
 
 
 
 
 
6c8898d
a40a80d
6e74145
 
 
a40a80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e74145
a40a80d
 
6e74145
a40a80d
 
 
 
 
 
 
 
 
 
6e74145
a40a80d
 
6e74145
 
 
 
 
 
 
 
a40a80d
6e74145
a40a80d
6e74145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a40a80d
f20f8a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e74145
 
 
 
a40a80d
 
 
 
 
6e74145
 
 
 
a40a80d
 
 
 
 
 
 
 
 
 
 
 
6e74145
 
 
 
 
 
 
 
 
 
 
a40a80d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import gradio as gr
import torch
import itertools
import pandas as pd
import spaces
import random
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModel
from sklearn.metrics import pairwise_distances
from collections import Counter
from itertools import chain
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import math

model_name = 'philipp-zettl/t5-small-long-qa'
qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model_name = 'philipp-zettl/t5-small-qg'
qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small')

embedding_model = AutoModel.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')
embedding_tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-MiniLM-L6-v2')

# Move only the student model to GPU if available
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
qa_model = qa_model.to(device)
qg_model = qg_model.to(device)
embedding_model = embedding_model.to(device)

max_questions = 1
max_answers = 1
max_elem_value = 100



def ngrams(sequence, n):
    return [tuple(sequence[i:i+n]) for i in range(len(sequence)-n+1)]

def count_ngrams(sequence, max_n):
    counts = Counter()
    for n in range(1, max_n + 1):
        counts.update(ngrams(sequence, n))
    return counts

def self_bleu(outputs):
    smoothing_function = SmoothingFunction().method1
    scores = []
    for i in range(len(outputs)):
        references = outputs[:i] + outputs[i+1:]
        # Avoid calculating BLEU score for empty references
        if references:
            scores.append(sentence_bleu(references, outputs[i], smoothing_function=smoothing_function))
    # If all references are empty, return a default value
    if not scores:
        return 0
    return sum(scores) / len(scores)

def dist_n(outputs, n):
    all_ngrams = list(chain(*[ngrams(output, n) for output in outputs]))
    unique_ngrams = set(all_ngrams)
    return len(unique_ngrams) / len(all_ngrams) if all_ngrams else 0

def perplexity(model, tokenizer, texts):
    encodings = tokenizer(texts, return_tensors='pt', padding=True, truncation=True)
    max_length = model.config.n_positions
    stride = 512
    lls = []
    for i in range(0, encodings.input_ids.size(1), stride):
        begin_loc = max(i + stride - max_length, 0)
        end_loc = i + stride
        trg_len = end_loc - i
        input_ids = encodings.input_ids[:, begin_loc:end_loc].to(model.device)
        target_ids = input_ids.clone()
        target_ids[:, :-trg_len] = -100

        with torch.no_grad():
            outputs = model(input_ids, labels=target_ids)
            log_likelihood = outputs.loss * trg_len
        lls.append(log_likelihood)

    ppl = torch.exp(torch.stack(lls).sum() / end_loc)
    return ppl.item()

def embedding_similarity(inputs, outputs):
    global embedding_model, embedding_tokenizer, device
    def embed(texts):
        inputs = embedding_tokenizer(texts, return_tensors='pt', padding=True, truncation=True).to(device)
        with torch.no_grad():
            outputs = embedding_model(**inputs)
        return outputs.last_hidden_state.mean(dim=1).cpu().numpy()

    input_embeddings = embed(inputs)
    output_embeddings = embed(outputs)

    similarities = pairwise_distances(input_embeddings, output_embeddings, metric='cosine')
    return sum(similarities) / len(similarities)

def js_divergence(p, q):
    def kl_divergence(p, q):
        return sum(p[i] * math.log(p[i] / q[i]) for i in range(len(p)) if p[i] != 0 and q[i] != 0)
    
    p_norm = [float(i)/sum(p) for i in p]
    q_norm = [float(i)/sum(q) for i in q]
    
    m = [(p_norm[i] + q_norm[i]) / 2 for i in range(len(p_norm))]
    
    return (kl_divergence(p_norm, m) + kl_divergence(q_norm, m)) / 2

def evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=85):
    generated_outputs = []

    for input_text in eval_data:
        input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
        outputs = model.generate(
            input_ids, 
            num_beams=num_beams, 
            num_beam_groups=num_beam_groups, 
            diversity_penalty=1.0,
            max_new_tokens=max_length,
        )
        decoded_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        generated_outputs.append(decoded_text.split())

    # Self-BLEU for diversity
    diversity_score = self_bleu(generated_outputs)

    # Dist-1 and Dist-2 for diversity
    dist1 = dist_n(generated_outputs, 1)
    dist2 = dist_n(generated_outputs, 2)

    # Perplexity for fluency and relevance
    fluency_score = perplexity(model, tokenizer, [" ".join(output) for output in generated_outputs])

    # Embedding similarity for contextual relevance
    contextual_score = embedding_similarity(eval_data, [" ".join(output) for output in generated_outputs])

    # Jensen-Shannon Divergence for distribution similarity
    generated_ngrams = count_ngrams(list(chain(*generated_outputs)), 4)
    reference_ngrams = count_ngrams(list(chain(*[tokenizer.tokenize(text) for text in eval_data])), 4)
    all_ngrams = set(generated_ngrams.keys()).union(set(reference_ngrams.keys()))
    p = [generated_ngrams[ngram] for ngram in all_ngrams]
    q = [reference_ngrams[ngram] for ngram in all_ngrams]
    jsd_score = js_divergence(p, q)

    return {
        "diversity_score": diversity_score,
        "dist1": dist1,
        "dist2": dist2,
        "fluency_score": fluency_score,
        "contextual_score": contextual_score,
        "jsd_score": jsd_score
}

def find_best_parameters(eval_data, model, tokenizer, max_length=85):

    # Parameter ranges
    parameter_map = {
        2: [2],
        4: [2],
        6: [2], # 6x3 == 4x2
        8: [2], # 8x4 == 6x3 == 4x2
        10: [2], # 10x5 == 8x4 == 6x3 == 4x2
    }

    # Find the best parameters
    best_score = -float('inf')
    best_params = None

    for num_beams in parameter_map.keys():
        for num_beam_groups in parameter_map[num_beams]:
            if num_beam_groups > num_beams:
                continue  # num_beam_groups should not be greater than num_beams

            scores = evaluate_model(num_beams, num_beam_groups, model, tokenizer, eval_data, max_length=max_length)
            # Combine scores to determine the best parameters
            combined_score = (scores['dist1'] + scores['dist2'] - scores['fluency_score'] + scores['contextual_score'] - scores['jsd_score']).mean()
            print(f"num_beams={num_beams}, num_beam_groups={num_beam_groups}, avg combined score={combined_score}")
            
            if combined_score > best_score:
                best_score = combined_score
                best_params = (num_beams, num_beam_groups)

    print(f"Best parameters: num_beams={best_params[0]}, num_beam_groups={best_params[1]} with combined score={best_score}")
    return best_params




def run_model(inputs, tokenizer, model, num_beams=2, num_beam_groups=2, temperature=0.5, num_return_sequences=1, max_length=85):
    all_outputs = []
    torch.manual_seed(42069)
    for input_text in inputs:
        model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True)
        input_ids = torch.tensor(model_inputs['input_ids']).to(device)
        for sample in input_ids:
            sample_outputs = []
            with torch.no_grad():
                sample_output = model.generate(
                    input_ids[:1],
                    max_length=max_length,
                    #temperature=temperature,
                    #do_sample=True,
                    num_return_sequences=num_return_sequences,
                    low_memory=True,
                    #top_p=temperature,
                    #num_beams=max(2, num_return_sequences),
                    use_cache=True,
                    # Contrastive search
                    #penalty_alpha=0.6,
                    #top_k=4,
                    # Multi-nomial sampling
                    #do_sample=True,
                    #num_beams=1,
                    # Beam search
                    #num_beams=5,
                    # Beam search multinomial sampling
                    #num_beams=5,
                    #do_sample=True,
                    # Diverse Beam search decoding
                    num_beams=max(2, num_return_sequences),
                    num_beam_groups=max(2, num_return_sequences),
                    diversity_penalty=temperature,
                    #do_sample=True,

                )
                for i, sample_output in enumerate(sample_output):
                    sample_output = sample_output.unsqueeze(0)
                    sample_output = tokenizer.decode(sample_output[0], skip_special_tokens=True)
                    sample_outputs.append(sample_output)

            all_outputs.append(sample_outputs)
    return all_outputs


@spaces.GPU
def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1, max_length=85):
    inputs = [
        f'context: {content}'
    ]
    question = run_model(
        inputs, 
        tokenizer, 
        qg_model, 
        num_beams=num_return_sequences_qg, 
        num_beam_groups=num_return_sequences_qg, 
        temperature=temperature_qg, 
        num_return_sequences=num_return_sequences_qg, 
        max_length=max_length
    )

    q_params = find_best_parameters(list(chain.from_iterable(question)), qg_model, tokenizer, max_length=max_length)

    question = run_model(
        inputs, 
        tokenizer, 
        qg_model, 
        num_beams=q_params[0],
        num_beam_groups=q_params[1],
        temperature=temperature_qg, 
        num_return_sequences=num_return_sequences_qg, 
        max_length=max_length
    )

    inputs = list(chain.from_iterable([
        [f'question: {q} context: {content}' for q in q_set] for q_set in question
    ]))
    answer = run_model(
        inputs,
        tokenizer, 
        qa_model, 
        num_beams=num_return_sequences_qa,
        num_beam_groups=num_return_sequences_qa,
        temperature=temperature_qa,
        num_return_sequences=num_return_sequences_qa,
        max_length=max_length
    )

    questions = list(chain.from_iterable(question))
    answers = list(chain.from_iterable(answer))

    results = []
    for idx, ans in enumerate(answers):
        results.append({'question': questions[idx % num_return_sequences_qg], 'answer': ans})
    return results


def variable_outputs(k, max_elems=10):
    global max_elem_value
    k = int(k)
    return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems, max_elem_value)- k)


def set_outputs(content, max_elems=10):
    c = eval(content)
    print('received content: ', c)
    return [gr.Text(value=t, visible=True) for t in c] + [gr.Text(visible=False)] * (max(max_elems, 10) - len(c))


def create_file_download(qnas):
    with open('qnas.tsv', 'w') as f:
        for idx, qna in qnas.iterrows():
            f.write(qna['Question'] + '\t' + qna['Answer'])
            if idx < len(qnas) - 1:
                f.write('\n')
    return 'qnas.tsv'


with gr.Blocks(css='.hidden_input {display: none;}') as demo:
    with gr.Row(equal_height=True):
        gr.Markdown(
        """
        # QA-Generator
        A combination of fine-tuned flan-T5(-small) models chained into sequence
        to generate:
        
        A) a versatile set of questions
        B) an accurate set of matching answers
        
        according to a given piece of text content.

        The idea is simple:
        
        1. Add your content
        2. Select the amount of questions you want to generate
        2.2 (optional) Select the amount of answers you want to generate per goven question
        3. Press generate
        4. ???
        5. Profit

        If you're satisfied with the generated data set, you can export it as TSV
        to edit or import it into your favourite tool.
        """)
    with gr.Row(equal_height=True):
        with gr.Group("Content"):
            content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000)
        with gr.Group("Settings"):
            temperature_qg = gr.Slider(label='Temperature QG', value=0.2, minimum=0, maximum=1, step=0.01)
            temperature_qa = gr.Slider(label='Temperature QA', value=0.5, minimum=0, maximum=1, step=0.01)
            max_length = gr.Number(label='Max Length', value=85, minimum=1, step=1, maximum=512)
            num_return_sequences_qg = gr.Number(label='Number Questions', value=max_questions, minimum=1, step=1, maximum=max(max_questions, max_elem_value))
            num_return_sequences_qa = gr.Number(label="Number Answers", value=max_answers, minimum=1, step=1, maximum=max(max_questions, max_elem_value))

    with gr.Row():
        gen_btn = gr.Button("Generate")

    @gr.render(
        inputs=[
            content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
            max_length
        ],
        triggers=[gen_btn.click]
    )
    def render_results(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa, max_length):
        qnas = gen(
            content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa,
            max_length
        )
        df = gr.Dataframe(
            value=[u.values() for u in qnas],
            headers=['Question', 'Answer'],
            col_count=2,
            wrap=True
        )
        pd_df = pd.DataFrame([u.values() for u in qnas], columns=['Question', 'Answer'])

        download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df))



demo.launch()