Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import spaces | |
import itertools | |
import pandas as pd | |
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer | |
model_name = 'philipp-zettl/t5-small-long-qa' | |
qa_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
model_name = 'philipp-zettl/t5-small-qg' | |
qg_model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small') | |
# Move only the student model to GPU if available | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
qa_model = qa_model.to(device) | |
qg_model = qg_model.to(device) | |
max_questions = 1 | |
max_answers = 1 | |
def run_model(inputs, tokenizer, model, temperature=0.5, num_return_sequences=1): | |
all_outputs = [] | |
for input_text in inputs: | |
model_inputs = tokenizer([input_text], max_length=512, padding=True, truncation=True) | |
input_ids = torch.tensor(model_inputs['input_ids']).to(device) | |
for sample in input_ids: | |
sample_outputs = [] | |
with torch.no_grad(): | |
sample_output = model.generate( | |
input_ids[:1], | |
max_length=85, | |
temperature=temperature, | |
do_sample=True, | |
num_return_sequences=num_return_sequences, | |
low_memory=True, | |
num_beams=max(2, num_return_sequences), | |
use_cache=True, | |
) | |
for i, sample_output in enumerate(sample_output): | |
sample_output = sample_output.unsqueeze(0) | |
sample_output = tokenizer.decode(sample_output[0], skip_special_tokens=True) | |
sample_outputs.append(sample_output) | |
all_outputs.append(sample_outputs) | |
return all_outputs | |
def gen(content, temperature_qg=0.5, temperature_qa=0.75, num_return_sequences_qg=1, num_return_sequences_qa=1): | |
inputs = [ | |
f'context: {content}' | |
] | |
question = run_model(inputs, tokenizer, qg_model, temperature_qg, num_return_sequences_qg) | |
inputs = list(itertools.chain.from_iterable([ | |
[f'question: {q} {inputs[0]}' for q in q_set] for q_set in question | |
])) | |
answer = run_model(inputs, tokenizer, qa_model, temperature_qa, num_return_sequences_qa) | |
questions = list(itertools.chain.from_iterable(question)) | |
answers = list(itertools.chain.from_iterable(answer)) | |
results = [] | |
for idx, ans in enumerate(answers): | |
results.append({'question': questions[idx % num_return_sequences_qg], 'answer': ans}) | |
return results | |
def variable_outputs(k, max_elems=10): | |
k = int(k) | |
return [gr.Text(visible=True)] * k + [gr.Text(visible=False)] * (max(max_elems, 10)- k) | |
def set_outputs(content, max_elems=10): | |
c = eval(content) | |
print('received content: ', c) | |
return [gr.Text(value=t, visible=True) for t in c] + [gr.Text(visible=False)] * (max(max_elems, 10) - len(c)) | |
def create_file_download(qnas): | |
with open('qnas.tsv', 'w') as f: | |
for idx, qna in qnas.iterrows(): | |
f.write(qna['Question'] + '\t' + qna['Answer']) | |
if idx < len(qnas) - 1: | |
f.write('\n') | |
return 'qnas.tsv' | |
with gr.Blocks() as demo: | |
with gr.Row(equal_height=True): | |
with gr.Group("Content"): | |
content = gr.Textbox(label='Content', lines=15, placeholder='Enter text here', max_lines=10_000) | |
with gr.Group("Settings"): | |
temperature_qg = gr.Slider(label='Temperature QG', value=0.5, minimum=0, maximum=1, step=0.01) | |
temperature_qa = gr.Slider(label='Temperature QA', value=0.75, minimum=0, maximum=1, step=0.01) | |
num_return_sequences_qg = gr.Number(label='Number Questions', value=max_questions, minimum=1, step=1, maximum=max(max_questions, 10)) | |
num_return_sequences_qa = gr.Number(label="Number Answers", value=max_answers, minimum=1, step=1, maximum=max(max_questions, 10)) | |
with gr.Row(): | |
gen_btn = gr.Button("Generate") | |
def render_results(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa): | |
qnas = gen(content, temperature_qg, temperature_qa, num_return_sequences_qg, num_return_sequences_qa) | |
df = gr.Dataframe( | |
value=[u.values() for u in qnas], | |
headers=['Question', 'Answer'], | |
col_count=2, | |
wrap=True | |
) | |
pd_df = pd.DataFrame([u.values() for u in qnas], columns=['Question', 'Answer']) | |
download = gr.DownloadButton(label='Download (without headers)', value=create_file_download(pd_df)) | |
demo.launch() |