added semantic search of local books
Browse files- .gitignore +4 -0
- agents.py +63 -25
- app.py +5 -2
- data/machiavelli-the-prince.txt +0 -0
- data/sunzi-art-of-war.txt +0 -0
- models.py +35 -2
.gitignore
CHANGED
@@ -158,3 +158,7 @@ cython_debug/
|
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
#.idea/
|
|
|
|
|
|
|
|
|
|
158 |
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
#.idea/
|
161 |
+
|
162 |
+
# ChromaDB
|
163 |
+
db/
|
164 |
+
chromadb/
|
agents.py
CHANGED
@@ -11,7 +11,9 @@ from langchain.schema import HumanMessage
|
|
11 |
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
|
12 |
HumanMessagePromptTemplate
|
13 |
from models import load_chat_agent, load_chained_agent, load_sales_agent, \
|
14 |
-
load_sqlite_agent
|
|
|
|
|
15 |
|
16 |
import logging
|
17 |
|
@@ -68,6 +70,59 @@ def chatAgent(chat_message):
|
|
68 |
output = "Please rephrase and try chat again."
|
69 |
return output
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
def agentController(question_text, model_name):
|
73 |
output = ""
|
@@ -78,7 +133,13 @@ def agentController(question_text, model_name):
|
|
78 |
elif is_magic(question_text, DIGITAL_MAGIC_TOKENS):
|
79 |
output = chinookAgent(question_text, model_name)
|
80 |
print(f"πΉ chinookAgent: {output}")
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
try:
|
83 |
instruction = instruct_prompt.format(query=question_text)
|
84 |
logger.info(f"instruction: {instruction}")
|
@@ -94,26 +155,3 @@ def agentController(question_text, model_name):
|
|
94 |
logger.error(e)
|
95 |
|
96 |
return output
|
97 |
-
|
98 |
-
|
99 |
-
def salesAgent(instruction):
|
100 |
-
output = ""
|
101 |
-
try:
|
102 |
-
agent = load_sales_agent(verbose=True)
|
103 |
-
output = agent.run(instruction)
|
104 |
-
print("panda> " + output)
|
105 |
-
except Exception as e:
|
106 |
-
logger.error(e)
|
107 |
-
output = f"Rephrasing your prompt could get better sales results {e}"
|
108 |
-
return output
|
109 |
-
|
110 |
-
def chinookAgent(instruction, model_name):
|
111 |
-
output = ""
|
112 |
-
try:
|
113 |
-
agent = load_sqlite_agent(model_name)
|
114 |
-
output = agent.run(instruction)
|
115 |
-
print("chinook> " + output)
|
116 |
-
except Exception as e:
|
117 |
-
logger.error(e)
|
118 |
-
output = "Rephrasing your prompt could get better db results {e}"
|
119 |
-
return output
|
|
|
11 |
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
|
12 |
HumanMessagePromptTemplate
|
13 |
from models import load_chat_agent, load_chained_agent, load_sales_agent, \
|
14 |
+
load_sqlite_agent, load_book_agent
|
15 |
+
|
16 |
+
import openai, numpy as np
|
17 |
|
18 |
import logging
|
19 |
|
|
|
70 |
output = "Please rephrase and try chat again."
|
71 |
return output
|
72 |
|
73 |
+
def salesAgent(instruction):
|
74 |
+
output = ""
|
75 |
+
try:
|
76 |
+
agent = load_sales_agent(verbose=True)
|
77 |
+
output = agent.run(instruction)
|
78 |
+
print("panda> " + output)
|
79 |
+
except Exception as e:
|
80 |
+
logger.error(e)
|
81 |
+
output = f"Rephrasing your prompt could get better sales results {e}"
|
82 |
+
return output
|
83 |
+
|
84 |
+
def chinookAgent(instruction, model_name):
|
85 |
+
output = ""
|
86 |
+
try:
|
87 |
+
agent = load_sqlite_agent(model_name)
|
88 |
+
output = agent.run(instruction)
|
89 |
+
print("chinook> " + output)
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(e)
|
92 |
+
output = "Rephrasing your prompt could get better db results {e}"
|
93 |
+
return output
|
94 |
+
|
95 |
+
def semantically_similar(string1, string2):
|
96 |
+
#
|
97 |
+
# proper way to do this is to use a
|
98 |
+
# vector DB (chroma, pinecone, ...)
|
99 |
+
#
|
100 |
+
response = openai.Embedding.create(
|
101 |
+
input=[string1, string2],
|
102 |
+
engine="text-similarity-davinci-001"
|
103 |
+
)
|
104 |
+
embedding_a = response['data'][0]['embedding']
|
105 |
+
embedding_b = response['data'][1]['embedding']
|
106 |
+
similarity_score = np.dot(embedding_a, embedding_b)
|
107 |
+
logger.info(f"similarity: {similarity_score}")
|
108 |
+
|
109 |
+
return similarity_score > 0.8
|
110 |
+
|
111 |
+
|
112 |
+
def bookAgent(query):
|
113 |
+
output = ""
|
114 |
+
try:
|
115 |
+
agent = load_book_agent(True)
|
116 |
+
result = agent({
|
117 |
+
"query": query
|
118 |
+
})
|
119 |
+
logger.info(f"book response: {result['result']}")
|
120 |
+
output = result['result']
|
121 |
+
except Exception as e:
|
122 |
+
logger.error(e)
|
123 |
+
output = "Rephrasing your prompt for the book agent{e}"
|
124 |
+
return output
|
125 |
+
|
126 |
|
127 |
def agentController(question_text, model_name):
|
128 |
output = ""
|
|
|
133 |
elif is_magic(question_text, DIGITAL_MAGIC_TOKENS):
|
134 |
output = chinookAgent(question_text, model_name)
|
135 |
print(f"πΉ chinookAgent: {output}")
|
136 |
+
elif semantically_similar(question_text, "fight a war"):
|
137 |
+
output = bookAgent(question_text)
|
138 |
+
print(f"πΉ bookAgent: {output}")
|
139 |
+
elif semantically_similar(question_text, "how to govern"):
|
140 |
+
output = bookAgent(question_text)
|
141 |
+
print(f"πΉ bookAgent: {output}")
|
142 |
+
else: # reasoning agents
|
143 |
try:
|
144 |
instruction = instruct_prompt.format(query=question_text)
|
145 |
logger.info(f"instruction: {instruction}")
|
|
|
155 |
logger.error(e)
|
156 |
|
157 |
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
|
10 |
import streamlit as st
|
11 |
from pprint import pprint
|
12 |
-
from agents import agentController, salesAgent, chinookAgent, chatAgent
|
13 |
|
14 |
##############################################################################
|
15 |
|
@@ -104,7 +104,10 @@ with col2:
|
|
104 |
value="πΉ For my company, what is the total sales " +
|
105 |
"broken down by month?\n" +
|
106 |
"πΉ How many total artists are there in each "+
|
107 |
-
"genres in our digital media database
|
|
|
|
|
|
|
108 |
|
109 |
with col3:
|
110 |
st.markdown("__Enhanced reasoning__ [π΅](https://www.youtube.com/watch?v=hTTUaImgCyU&t=62s)")
|
|
|
9 |
|
10 |
import streamlit as st
|
11 |
from pprint import pprint
|
12 |
+
from agents import agentController , salesAgent, chinookAgent, chatAgent
|
13 |
|
14 |
##############################################################################
|
15 |
|
|
|
104 |
value="πΉ For my company, what is the total sales " +
|
105 |
"broken down by month?\n" +
|
106 |
"πΉ How many total artists are there in each "+
|
107 |
+
"genres in our digital media database?\n" +
|
108 |
+
"πΉ How to best govern a city? (The Prince)\n" +
|
109 |
+
"πΉ How to win a war? (Art of War)",
|
110 |
+
)
|
111 |
|
112 |
with col3:
|
113 |
st.markdown("__Enhanced reasoning__ [π΅](https://www.youtube.com/watch?v=hTTUaImgCyU&t=62s)")
|
data/machiavelli-the-prince.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/sunzi-art-of-war.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models.py
CHANGED
@@ -10,9 +10,14 @@ import pandas as pd
|
|
10 |
|
11 |
from langchain.agents import AgentType, load_tools, initialize_agent,\
|
12 |
create_pandas_dataframe_agent
|
|
|
13 |
from langchain.chat_models import ChatOpenAI
|
14 |
from langchain.llms import OpenAI
|
15 |
-
from langchain import
|
|
|
|
|
|
|
|
|
16 |
|
17 |
OPENAI_LLMS = [
|
18 |
'text-davinci-003',
|
@@ -45,10 +50,38 @@ def createLLM(model_name="text-davinci-003", temperature=0):
|
|
45 |
model_kwargs={"temperature":1e-10})
|
46 |
return llm
|
47 |
|
48 |
-
|
49 |
def load_chat_agent(verbose=True):
|
50 |
return createLLM(OPENAI_CHAT_LLMS[0], temperature=0.5)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def load_sales_agent(verbose=True):
|
53 |
'''
|
54 |
Hard-coded agent that gates an internal sales CSV file for demo
|
|
|
10 |
|
11 |
from langchain.agents import AgentType, load_tools, initialize_agent,\
|
12 |
create_pandas_dataframe_agent
|
13 |
+
from langchain import SQLDatabase, SQLDatabaseChain, HuggingFaceHub
|
14 |
from langchain.chat_models import ChatOpenAI
|
15 |
from langchain.llms import OpenAI
|
16 |
+
from langchain.chains import RetrievalQA
|
17 |
+
from langchain.document_loaders import DirectoryLoader, TextLoader
|
18 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
19 |
+
from langchain.vectorstores import Chroma
|
20 |
+
from langchain.text_splitter import CharacterTextSplitter
|
21 |
|
22 |
OPENAI_LLMS = [
|
23 |
'text-davinci-003',
|
|
|
50 |
model_kwargs={"temperature":1e-10})
|
51 |
return llm
|
52 |
|
|
|
53 |
def load_chat_agent(verbose=True):
|
54 |
return createLLM(OPENAI_CHAT_LLMS[0], temperature=0.5)
|
55 |
|
56 |
+
import os
|
57 |
+
import chromadb
|
58 |
+
from chromadb.config import Settings
|
59 |
+
DB_DIR = "./db"
|
60 |
+
|
61 |
+
def load_book_agent(verbose=True):
|
62 |
+
retriever = None
|
63 |
+
embeddings = OpenAIEmbeddings(openai_api_key = os.environ['OPENAI_API_KEY'])
|
64 |
+
|
65 |
+
if not os.path.exists(DB_DIR):
|
66 |
+
loader = DirectoryLoader(path="./data/", glob="**/*.txt")
|
67 |
+
docs = loader.load()
|
68 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20)
|
69 |
+
text_chunks = text_splitter.split_documents(documents=docs)
|
70 |
+
docsearch = Chroma.from_documents(text_chunks, embeddings,
|
71 |
+
persist_directory="./db")
|
72 |
+
retriever = docsearch.as_retriever()
|
73 |
+
else:
|
74 |
+
vectordb = Chroma(persist_directory=DB_DIR,
|
75 |
+
embedding_function=embeddings)
|
76 |
+
retriever = vectordb.as_retriever()
|
77 |
+
|
78 |
+
qa = RetrievalQA.from_chain_type(llm = OpenAI(temperature=0.9),
|
79 |
+
chain_type="stuff",
|
80 |
+
retriever=retriever,
|
81 |
+
return_source_documents=True
|
82 |
+
)
|
83 |
+
return qa
|
84 |
+
|
85 |
def load_sales_agent(verbose=True):
|
86 |
'''
|
87 |
Hard-coded agent that gates an internal sales CSV file for demo
|