############################################################################## # Utility methods for building LLMs and agent models # # @philmui # Mon May 1 18:34:45 PDT 2023 ############################################################################## import os import pandas as pd from langchain.agents import AgentType, load_tools, initialize_agent,\ create_pandas_dataframe_agent from langchain import SQLDatabase, SQLDatabaseChain, HuggingFaceHub from langchain.chat_models import ChatOpenAI from langchain.llms import OpenAI from langchain.chains import RetrievalQA from langchain.document_loaders import DirectoryLoader, TextLoader from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter OPENAI_LLMS = [ 'text-davinci-003', 'text-babbage-001', 'text-curie-001', 'text-ada-001' ] OPENAI_CHAT_LLMS = [ 'gpt-3.5-turbo', 'gpt-4', ] HUGGINGFACE_LLMS = [ 'google/flan-t5-xl', 'databricks/dolly-v2-3b', 'bigscience/bloom-1b7' ] HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN") def createLLM(model_name="text-davinci-003", temperature=0): llm = None if model_name in OPENAI_LLMS: llm = OpenAI(model_name=model_name, temperature=temperature) elif model_name in OPENAI_CHAT_LLMS: llm = ChatOpenAI(model_name=model_name, temperature=temperature) elif model_name in HUGGINGFACE_LLMS: llm = HuggingFaceHub(repo_id=model_name, model_kwargs={"temperature":1e-10}) return llm def load_chat_agent(verbose=True): return createLLM(OPENAI_CHAT_LLMS[0], temperature=0.5) import os import chromadb from chromadb.config import Settings DB_DIR = "./db" def load_book_agent(verbose=True): retriever = None embeddings = OpenAIEmbeddings(openai_api_key = os.environ['OPENAI_API_KEY']) if not os.path.exists(DB_DIR): loader = DirectoryLoader(path="./data/", glob="**/*.txt") docs = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=20) text_chunks = text_splitter.split_documents(documents=docs) docsearch = Chroma.from_documents(text_chunks, embeddings, persist_directory="./db") retriever = docsearch.as_retriever() else: vectordb = Chroma(persist_directory=DB_DIR, embedding_function=embeddings) retriever = vectordb.as_retriever() qa = RetrievalQA.from_chain_type(llm = OpenAI(temperature=0.9), chain_type="stuff", retriever=retriever, return_source_documents=True ) return qa def load_sales_agent(verbose=True): ''' Hard-coded agent that gates an internal sales CSV file for demo ''' chat = createLLM(model_name='text-davinci-003') df = pd.read_csv("data/sales_data.csv") agent = create_pandas_dataframe_agent(chat, df, verbose=verbose) return agent def load_sqlite_agent(model_name="text-davinci-003"): ''' Hard-coded agent that gates a sqlite DB of digital media for demo ''' llm = createLLM(OPENAI_LLMS[0]) sqlite_db_path = "./data/Chinook_Sqlite.sqlite" db = SQLDatabase.from_uri(f"sqlite:///{sqlite_db_path}") db_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True) return db_chain from langchain.tools import DuckDuckGoSearchRun, GoogleSearchRun from langchain.utilities import GoogleSearchAPIWrapper def load_chained_agent(verbose=True, model_name="text-davinci-003"): llm = createLLM(model_name) toolkit = load_tools(["serpapi", "open-meteo-api", "news-api", "python_repl", "wolfram-alpha"], llm=llm, serpapi_api_key=os.getenv('SERPAPI_API_KEY'), news_api_key=os.getenv('NEWS_API_KEY'), tmdb_bearer_token=os.getenv('TMDB_BEARER_TOKEN') ) toolkit += [DuckDuckGoSearchRun()] agent = initialize_agent(toolkit, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=verbose, return_intermediate_steps=True) return agent