File size: 8,110 Bytes
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import time, torch
from langchain.prompts import PromptTemplate
from langchain_openai import ChatOpenAI, OpenAI
from langchain.schema import HumanMessage
from langchain_core.output_parsers import JsonOutputParser
from langchain.output_parsers import RetryWithErrorOutputParser

from vouchervision.utils_LLM import SystemLoadMonitor, count_tokens
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template
from vouchervision.utils_taxonomy_WFO import validate_taxonomy_WFO
from vouchervision.utils_geolocate_HERE import validate_coordinates_here

class OpenAIHandler: 
    RETRY_DELAY = 10  # Wait 10 seconds before retrying
    MAX_RETRIES = 3  # Maximum number of retries
    STARTING_TEMP = 0.5
    TOKENIZER_NAME = 'gpt-4'
    VENDOR = 'openai'

    def __init__(self, logger, model_name, JSON_dict_structure, is_azure, llm_object):
        self.logger = logger
        self.model_name = model_name
        self.JSON_dict_structure = JSON_dict_structure
        self.is_azure = is_azure
        self.llm_object = llm_object
        self.name_parts = self.model_name.split('-')
        
        self.monitor = SystemLoadMonitor(logger)
        self.has_GPU = torch.cuda.is_available() 

        self.starting_temp = float(self.STARTING_TEMP)
        self.temp_increment = float(0.2)
        self.adjust_temp = self.starting_temp 
        
        # Set up a parser
        self.parser = JsonOutputParser()

        self.prompt = PromptTemplate(
            template="Answer the user query.\n{format_instructions}\n{query}\n",
            input_variables=["query"],
            partial_variables={"format_instructions": self.parser.get_format_instructions()},
        )
        self._set_config()

    def _set_config(self):
        self.config = {'max_new_tokens': 1024,
                'temperature': self.starting_temp,
                'random_seed': 2023,
                'top_p': 1,
                }
        # Adjusting the LLM settings based on whether Azure is used
        if self.is_azure:
            self.llm_object.deployment_name = self.model_name
            self.llm_object.model_name = self.model_name
        else:
            self.llm_object = None
        self._build_model_chain_parser()


       # Define a function to format the input for azure_call
    def format_input_for_azure(self, prompt_text):
        msg = HumanMessage(content=prompt_text.text)
        # self.llm_object.temperature = self.config.get('temperature')
        return self.llm_object(messages=[msg]) 

    def _adjust_config(self):
        new_temp = self.adjust_temp + self.temp_increment
        self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.adjust_temp += self.temp_increment
        self.config['temperature'] = self.adjust_temp   

    def _reset_config(self):
        self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.adjust_temp = self.starting_temp
        self.config['temperature'] = self.starting_temp   
        
    def _build_model_chain_parser(self):
        if not self.is_azure and ('instruct' in self.name_parts):
            # Set up the retry parser with 3 retries
            self.retry_parser = RetryWithErrorOutputParser.from_llm(
                # parser=self.parser, llm=self.llm_object if self.is_azure else OpenAI(temperature=self.config.get('temperature'), model=self.model_name), max_retries=self.MAX_RETRIES
                parser=self.parser, llm=self.llm_object if self.is_azure else OpenAI(model=self.model_name), max_retries=self.MAX_RETRIES
            )
        else:
            # Set up the retry parser with 3 retries
            self.retry_parser = RetryWithErrorOutputParser.from_llm(
                # parser=self.parser, llm=self.llm_object if self.is_azure else ChatOpenAI(temperature=self.config.get('temperature'), model=self.model_name), max_retries=self.MAX_RETRIES
                parser=self.parser, llm=self.llm_object if self.is_azure else ChatOpenAI(model=self.model_name), max_retries=self.MAX_RETRIES
            )
        # Prepare the chain
        if not self.is_azure and ('instruct' in self.name_parts):
            # self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else OpenAI(temperature=self.config.get('temperature'), model=self.model_name))
            self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else OpenAI(model=self.model_name))
        else:
            # self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else ChatOpenAI(temperature=self.config.get('temperature'), model=self.model_name))
            self.chain = self.prompt | (self.format_input_for_azure if self.is_azure else ChatOpenAI(model=self.model_name))


    def call_llm_api_OpenAI(self, prompt_template, json_report):
        self.json_report = json_report
        self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
        self.monitor.start_monitoring_usage()
        nt_in = 0
        nt_out = 0
        
        ind = 0
        while ind < self.MAX_RETRIES:
            ind += 1
            try:
                model_kwargs = {"temperature": self.adjust_temp}
                # Invoke the chain to generate prompt text
                response = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs})

                response_text = response.content if not isinstance(response, str) else response

                # Use retry_parser to parse the response with retry logic
                output = self.retry_parser.parse_with_prompt(response_text, prompt_value=prompt_template)

                if output is None:
                    self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response_text}')
                    self._adjust_config()
                else:
                    nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
                    nt_out = count_tokens(response_text, self.VENDOR, self.TOKENIZER_NAME)
                
                    output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
                    if output is None:
                        self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response_text}')
                        self._adjust_config()   
                    else:
                        json_report.set_text(text_main=f'Working on WFO and Geolocation')

                        output, WFO_record = validate_taxonomy_WFO(output, replace_if_success_wfo=False) ###################################### make this configurable
                        output, GEO_record = validate_coordinates_here(output, replace_if_success_geo=False) ###################################### make this configurable

                        self.logger.info(f"Formatted JSON: {output}")

                        self.monitor.stop_monitoring_report_usage()    
                        
                        if self.adjust_temp != self.starting_temp:            
                            self._reset_config()
                        json_report.set_text(text_main=f'LLM call successful')
                        return output, nt_in, nt_out, WFO_record, GEO_record
            
            except Exception as e:
                self.logger.error(f'{e}')
                
                self._adjust_config()           
                time.sleep(self.RETRY_DELAY)

        self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
        self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')

        self.monitor.stop_monitoring_report_usage()                
        self._reset_config()

        json_report.set_text(text_main=f'LLM call failed')
        return None, nt_in, nt_out, None, None