File size: 14,959 Bytes
c5e57d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import os, re, json, yaml, torch
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer

import json, torch, transformers, gc
from transformers import BitsAndBytesConfig
from langchain.output_parsers.retry import RetryOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from huggingface_hub import hf_hub_download
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline

from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template

# MODEL_NAME = "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"
# sltp_version = 'HLT_MICH_Angiospermae_SLTPvA_v1-0_medium__OCR-C25-L25-E50-R05'
# LORA = "phyloforfun/mistral-7b-instruct-v2-bnb-4bit__HLT_MICH_Angiospermae_SLTPvC_v1-0_medium_OCR-C25-L25-E50-R05"

TEXT = "HERBARIUM OF MARCUS W. LYON , JR . Tracaulon sagittatum Indiana : Porter Co. Mincral Springs edge wet subdural woods 1927 TX 11 Flowers pink UNIVERSIT HERBARIUM MICHIGAN MICH University of Michigan Herbarium 1439649 copyright reserved PERSICARIA FEB 26 1965 cm "
PARENT_MODEL = "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"

class LocalFineTuneHandler: 
    RETRY_DELAY = 2  # Wait 2 seconds before retrying
    MAX_RETRIES = 5  # Maximum number of retries
    STARTING_TEMP = 0.001
    TOKENIZER_NAME = None
    VENDOR = 'mistral'
    MAX_GPU_MONITORING_INTERVAL = 2  # seconds

    

    def __init__(self, cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation=None):
        # self.model_id = f"phyloforfun/{self.model_name}"
        # model_name = LORA #######################################################
        
        # self.JSON_dict_structure = JSON_dict_structure
        # self.JSON_dict_structure_str = json.dumps(self.JSON_dict_structure, sort_keys=False, indent=4)
        
        self.JSON_dict_structure_str = """{"catalogNumber": "", "scientificName": "", "genus": "", "specificEpithet": "", "scientificNameAuthorship": "", "collector": "", "recordNumber": "", "identifiedBy": "", "verbatimCollectionDate": "", "collectionDate": "", "occurrenceRemarks": "", "habitat": "", "locality": "", "country": "", "stateProvince": "", "county": "", "municipality": "", "verbatimCoordinates": "", "decimalLatitude": "", "decimalLongitude": "",  "minimumElevationInMeters": "", "maximumElevationInMeters": ""}"""


        self.cfg = cfg
        self.print_output = True
        self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO']
        self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO']
        self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia']

        self.logger = logger

        self.has_GPU = torch.cuda.is_available()
        if self.has_GPU:
            self.device = "cuda"
        else:
            self.device = "cpu"
            
        self.monitor = SystemLoadMonitor(logger)

        self.model_name = model_name.split("/")[1]
        self.model_id = model_name

        # self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model",filename="config.json")

        
        self.starting_temp = float(self.STARTING_TEMP)
        self.temp_increment = float(0.2)
        self.adjust_temp = self.starting_temp 

        self.load_in_4bit = False

        self.parser = JsonOutputParser()

        self._load_model()
        self._create_prompt()
        self._set_config()
        self._build_model_chain_parser()

    def _set_config(self):
        # self._clear_VRAM()
        self.config = {'max_new_tokens': 1024,
                'temperature': self.starting_temp,
                'seed': 2023,
                'top_p': 1,
                # 'top_k': 1,
                # 'top_k': 40,
                'do_sample': False,
                'n_ctx':4096,

                # Activate 4-bit precision base model loading
                # 'use_4bit': True,
                # # Compute dtype for 4-bit base models
                # 'bnb_4bit_compute_dtype': "float16",
                # # Quantization type (fp4 or nf4)
                # 'bnb_4bit_quant_type': "nf4",
                # # Activate nested quantization for 4-bit base models (double quantization)
                # 'use_nested_quant': False,
                }
        
    def _adjust_config(self):
        new_temp = self.adjust_temp + self.temp_increment
        if self.json_report:
            self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}')
        self.adjust_temp += self.temp_increment

    
    def _reset_config(self):
        if self.json_report:
            self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}')
        self.adjust_temp = self.starting_temp


    def _load_model(self):
        self.model = AutoPeftModelForCausalLM.from_pretrained(
            pretrained_model_name_or_path=self.model_id, # YOUR MODEL YOU USED FOR TRAINING
            load_in_4bit = self.load_in_4bit,
            low_cpu_mem_usage=True,
            
        ).to(self.device)

        self.tokenizer = AutoTokenizer.from_pretrained(PARENT_MODEL)
        self.eos_token_id = self.tokenizer.eos_token_id


    # def _build_model_chain_parser(self):
    #     self.local_model_pipeline = transformers.pipeline("text-generation", 
    #                 model=self.model_id,
    #                 max_new_tokens=self.config.get('max_new_tokens'),
    #                 # top_k=self.config.get('top_k'),
    #                 top_p=self.config.get('top_p'),
    #                 do_sample=self.config.get('do_sample'),
    #                 model_kwargs={"load_in_4bit": self.load_in_4bit})
    #     self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline)
    #     # Set up the retry parser with the runnable
    #     # self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)
    #     self.retry_parser = RetryOutputParser(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)

    #     # Create an llm chain with LLM and prompt
    #     self.chain = self.prompt | self.local_model  # LCEL
    def _build_model_chain_parser(self):
        self.local_model_pipeline = transformers.pipeline(
            "text-generation", 
            model=self.model_id,
            max_new_tokens=self.config.get('max_new_tokens'),
            top_k=self.config.get('top_k', None),
            top_p=self.config.get('top_p'),
            do_sample=self.config.get('do_sample'),
            model_kwargs={"load_in_4bit": self.load_in_4bit},
        )
        self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline)
        self.retry_parser = RetryOutputParser(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES)



    def _create_prompt(self):
        self.alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""   
        
        self.template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}""".format("{instructions}", "{OCR_text}", "{empty}")

        self.instructions_text = """Refactor the unstructured text into a valid JSON dictionary. The key names follow the Darwin Core Archive Standard. If a key lacks content, then insert an empty string. Fill in the following JSON structure as required: """
        self.instructions_json = self.JSON_dict_structure_str.replace("\n    ", " ").strip().replace("\n", " ")
        self.instructions = ''.join([self.instructions_text, self.instructions_json])


        # Create a prompt from the template so we can use it with Langchain
        self.prompt = PromptTemplate(template=self.template, input_variables=["instructions", "OCR_text", "empty"])

        # Set up a parser
        self.parser = JsonOutputParser()
    

    def extract_json(self, response_text):
        # Assuming the response is a list with a single string entry
        # response_text = response[0]

        response_pattern = re.compile(r'### Response:(.*)', re.DOTALL)
        response_match = response_pattern.search(response_text)
        if not response_match:
            raise ValueError("No '### Response:' section found in the provided text")
        
        response_text = response_match.group(1)
        
        # Use a regular expression to find JSON objects in the response text
        json_objects = re.findall(r'\{.*?\}', response_text, re.DOTALL)
        
        if json_objects:
            # Assuming you want the first JSON object if there are multiple
            json_str = json_objects[0]
            # Convert the JSON string to a Python dictionary
            json_dict = json.loads(json_str)
            return json_str, json_dict
        else:
            raise ValueError("No JSON object found in the '### Response:' section")


    def call_llm_local_custom_fine_tune(self, OCR_text, json_report, paths):
        _____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths
        self.json_report = json_report
        if self.json_report:
            self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
        self.monitor.start_monitoring_usage()
        
        nt_in = 0
        nt_out = 0

        self.inputs = self.tokenizer(
        [
            self.alpaca_prompt.format(
                self.instructions, # instruction
                OCR_text, # input
                "", # output - leave this blank for generation!
            )
        ], return_tensors = "pt").to(self.device)

        ind = 0
        while ind < self.MAX_RETRIES:
            ind += 1
            try:
                # Fancy
                # Dynamically set the temperature for this specific request
                model_kwargs = {"temperature": self.adjust_temp}
                
                # Invoke the chain to generate prompt text
                # results = self.chain.invoke({"instructions": self.instructions, "OCR_text": OCR_text, "empty": "", "model_kwargs": model_kwargs})

                # Use retry_parser to parse the response with retry logic
                # output = self.retry_parser.parse_with_prompt(results, prompt_value=OCR_text)
                results = self.local_model.invoke(OCR_text)
                output = self.retry_parser.parse_with_prompt(results, prompt_value=OCR_text)


                # Should work:
                # output = self.model.generate(**self.inputs, eos_token_id=self.eos_token_id, max_new_tokens=512)  # Adjust max_length as needed

                # Decode the generated text
                # generated_text = self.tokenizer.decode(output[0], skip_special_tokens=True)

                # json_str, json_dict = self.extract_json(generated_text)
                if self.print_output:
                    # print("\nJSON String:")
                    # print(json_str)
                    print("\nJSON Dictionary:")
                    print(output)


                
                if output is None:
                    self.logger.error(f'Failed to extract JSON from:\n{results}')
                    self._adjust_config()
                    del results

                else:
                    nt_in = count_tokens(self.instructions+OCR_text, self.VENDOR, self.TOKENIZER_NAME)
                    nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME)

                    output = validate_and_align_JSON_keys_with_template(output, json.loads(self.JSON_dict_structure_str))
                    
                    if output is None:
                        self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{results}')
                        self._adjust_config()
                    else:
                        self.monitor.stop_inference_timer() # Starts tool timer too
                        
                        if self.json_report:
                            self.json_report.set_text(text_main=f'Working on WFO, Geolocation, Links')
                        output_WFO, WFO_record, output_GEO, GEO_record = run_tools(output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki)

                        save_individual_prompt(sanitize_prompt(self.instructions+OCR_text), txt_file_path_ind_prompt)

                        self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")

                        usage_report = self.monitor.stop_monitoring_report_usage()    

                        if self.adjust_temp != self.starting_temp:            
                            self._reset_config()

                        if self.json_report:
                            self.json_report.set_text(text_main=f'LLM call successful')
                        del results
                        return output, nt_in, nt_out, WFO_record, GEO_record, usage_report

            except Exception as e:
                self.logger.error(f'{e}')


        self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
        if self.json_report:
            self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')

        self.monitor.stop_inference_timer() # Starts tool timer too
        usage_report = self.monitor.stop_monitoring_report_usage()                
        if self.json_report:
            self.json_report.set_text(text_main=f'LLM call failed')

        return None, nt_in, nt_out, None, None, usage_report



        # # Create a prompt from the template so we can use it with Langchain
        # self.prompt = PromptTemplate(template=template, input_variables=["query"])

        # # Set up a parser
        # self.parser = JsonOutputParser()




















model_name = "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"
sltp_version = 'HLT_MICH_Angiospermae_SLTPvA_v1-0_medium__OCR-C25-L25-E50-R05'
lora_name = "phyloforfun/mistral-7b-instruct-v2-bnb-4bit__HLT_MICH_Angiospermae_SLTPvA_v1-0_medium__OCR-C25-L25-E50-R05"

OCR_test = "HERBARIUM OF MARCUS W. LYON , JR . Tracaulon sagittatum Indiana : Porter Co. Mincral Springs edge wet subdural woods 1927 TX 11 Flowers pink UNIVERSIT HERBARIUM MICHIGAN MICH University of Michigan Herbarium 1439649 copyright reserved PERSICARIA FEB 26 1965 cm "





# model.merge_and_unload()



# Generate the output