File size: 7,302 Bytes
9d06861
e91ac58
 
 
 
 
9d06861
e91ac58
 
 
9d06861
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06861
 
 
e91ac58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d06861
 
 
e91ac58
 
 
9d06861
 
 
 
 
 
e91ac58
9d06861
e91ac58
 
 
 
 
9d06861
e91ac58
 
9d06861
e91ac58
 
 
 
 
 
 
9d06861
e91ac58
 
 
9d06861
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os, time, random, torch, json
from langchain_mistralai.chat_models import ChatMistralAI
from langchain.output_parsers import RetryWithErrorOutputParser
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import JsonOutputParser

from vouchervision.utils_LLM import SystemLoadMonitor, count_tokens, save_individual_prompt
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template
from vouchervision.utils_taxonomy_WFO import validate_taxonomy_WFO
from vouchervision.utils_geolocate_HERE import validate_coordinates_here
from vouchervision.tool_wikipedia import WikipediaLinks


class MistralHandler: 
    RETRY_DELAY = 2  # Wait 10 seconds before retrying
    MAX_RETRIES = 5  # Maximum number of retries
    STARTING_TEMP = 0.1
    TOKENIZER_NAME = None
    VENDOR = 'mistral'
    RANDOM_SEED = 2023

    def __init__(self, logger, model_name, JSON_dict_structure):
        self.logger = logger
        self.monitor = SystemLoadMonitor(logger)
        self.has_GPU = torch.cuda.is_available()        
        self.model_name = model_name
        self.JSON_dict_structure = JSON_dict_structure
        self.starting_temp = float(self.STARTING_TEMP)
        self.temp_increment = float(0.2)
        self.adjust_temp = self.starting_temp 

        # Set up a parser
        self.parser = JsonOutputParser()

        # Define the prompt template
        self.prompt = PromptTemplate(
            template="Answer the user query.\n{format_instructions}\n{query}\n",
            input_variables=["query"],
            partial_variables={"format_instructions": self.parser.get_format_instructions()},
        )

        self._set_config()

    def _set_config(self):
        self.config = {'max_tokens': 1024,
                'temperature': self.starting_temp,
                'random_seed': self.RANDOM_SEED,
                'safe_mode': False,
                'top_p': 1,
                }
        self._build_model_chain_parser()


    def _adjust_config(self):
        new_temp = self.adjust_temp + self.temp_increment
        self.config['random_seed'] = random.randint(1, 1000) 
        self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp} and random_seed to {self.config.get("random_seed")}')
        self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp} and random_seed to {self.config.get("random_seed")}')
        self.adjust_temp += self.temp_increment
        self.config['temperature'] = self.adjust_temp    

    def _reset_config(self):
        self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp} and random_seed to {self.RANDOM_SEED}')
        self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {self.starting_temp} and random_seed to {self.RANDOM_SEED}')
        self.adjust_temp = self.starting_temp
        self.config['temperature'] = self.starting_temp    
        self.config['random_seed'] = self.RANDOM_SEED
          
    def _build_model_chain_parser(self):
        # Initialize MistralAI
        self.llm_model = ChatMistralAI(mistral_api_key=os.environ.get("MISTRAL_API_KEY"),
                            model=self.model_name,
                            max_tokens=self.config.get('max_tokens'), 
                            safe_mode=self.config.get('safe_mode'), 
                            top_p=self.config.get('top_p'))
        
        # Set up the retry parser with the runnable
        self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.llm_model, max_retries=self.MAX_RETRIES)
        
        self.chain = self.prompt | self.llm_model    

    def call_llm_api_MistralAI(self, prompt_template, json_report, paths):
        _____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths

        self.json_report = json_report
        self.json_report.set_text(text_main=f'Sending request to {self.model_name}')
        self.monitor.start_monitoring_usage()
        nt_in = 0
        nt_out = 0

        ind = 0
        while ind < self.MAX_RETRIES:
            ind += 1
            try:
                model_kwargs = {"temperature": self.adjust_temp, "random_seed": self.config.get("random_seed")}
                
                # Invoke the chain to generate prompt text
                response = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs})

                # Use retry_parser to parse the response with retry logic
                output = self.retry_parser.parse_with_prompt(response.content, prompt_value=prompt_template)

                if output is None:
                    self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response}')
                    self._adjust_config()
                else:
                    nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME)
                    nt_out = count_tokens(response.content, self.VENDOR, self.TOKENIZER_NAME)
                    
                    output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure)
                    if output is None:
                        self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{response}')
                        self._adjust_config()           
                    else:
                        self.monitor.stop_inference_timer() # Starts tool timer too

                        json_report.set_text(text_main=f'Working on WFO, Geolocation, Links')
                        output, WFO_record = validate_taxonomy_WFO(output, replace_if_success_wfo=False) ###################################### make this configurable
                        output, GEO_record = validate_coordinates_here(output, replace_if_success_geo=False) ###################################### make this configurable

                        Wiki = WikipediaLinks(json_file_path_wiki)
                        Wiki.gather_wikipedia_results(output)

                        save_individual_prompt(Wiki.sanitize(prompt_template), txt_file_path_ind_prompt)

                        self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}")
                        
                        usage_report = self.monitor.stop_monitoring_report_usage()    

                        if self.adjust_temp != self.starting_temp:            
                            self._reset_config()

                        json_report.set_text(text_main=f'LLM call successful')
                        return output, nt_in, nt_out, WFO_record, GEO_record, usage_report

            except Exception as e:
                self.logger.error(f'JSON Parsing Error (LangChain): {e}')
                
                self._adjust_config()           
                time.sleep(self.RETRY_DELAY)

        self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts")
        self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts')

        usage_report = self.monitor.stop_monitoring_report_usage()                
        self._reset_config()
        json_report.set_text(text_main=f'LLM call failed')

        return None, nt_in, nt_out, None, None, usage_report