Spaces:
Running
Running
File size: 7,006 Bytes
e91ac58 9d06861 e91ac58 9d06861 e91ac58 524a99c e91ac58 9d06861 e91ac58 9d06861 e91ac58 524a99c e91ac58 524a99c e91ac58 9d06861 e91ac58 524a99c 9d06861 524a99c 9d06861 e91ac58 524a99c e91ac58 524a99c 9d06861 524a99c 9d06861 e91ac58 524a99c e91ac58 524a99c e91ac58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Helper funcs for LLM_XXXXX.py
import tiktoken, json, os, yaml
from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS
from transformers import AutoTokenizer
import GPUtil
import time
import psutil
import threading
import torch
from datetime import datetime
def save_individual_prompt(prompt_template, txt_file_path_ind_prompt):
with open(txt_file_path_ind_prompt, 'w',encoding='utf-8') as file:
file.write(prompt_template)
def remove_colons_and_double_apostrophes(text):
return text.replace(":", "").replace("\"", "")
def count_tokens(string, vendor, model_name):
full_string = string + JSON_FORMAT_INSTRUCTIONS
def run_count(full_string, model_name):
# Ensure the encoding is obtained correctly.
encoding = tiktoken.encoding_for_model(model_name)
tokens = encoding.encode(full_string)
return len(tokens)
try:
if vendor == 'mistral':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
tokens = tokenizer.tokenize(full_string)
return len(tokens)
else:
return run_count(full_string, model_name)
except Exception as e:
print(f"An error occurred: {e}")
return 0
class SystemLoadMonitor():
def __init__(self, logger) -> None:
self.monitoring_thread = None
self.logger = logger
self.gpu_usage = {'max_cpu_usage': 0, 'max_load': 0, 'max_vram_usage': 0, "max_ram_usage": 0, 'n_gpus': 0, 'monitoring': True}
self.start_time = None
self.tool_start_time = None
self.has_GPU = torch.cuda.is_available()
self.monitor_interval = 2
def start_monitoring_usage(self):
self.start_time = time.time()
self.monitoring_thread = threading.Thread(target=self.monitor_usage, args=(self.monitor_interval,))
self.monitoring_thread.start()
def stop_inference_timer(self):
# Stop inference timer and record elapsed time
self.inference_time = time.time() - self.start_time
# Immediately start the tool timer
self.tool_start_time = time.time()
def monitor_usage(self, interval):
while self.gpu_usage['monitoring']:
# GPU monitoring
if self.has_GPU:
GPUs = GPUtil.getGPUs()
self.gpu_usage['n_gpus'] = len(GPUs) # Count the number of GPUs
total_load = 0
total_memory_usage_gb = 0
for gpu in GPUs:
total_load += gpu.load
total_memory_usage_gb += gpu.memoryUsed / 1024.0
if self.gpu_usage['n_gpus'] > 0: # Avoid division by zero
# Calculate the average load and memory usage across all GPUs
self.gpu_usage['max_load'] = max(self.gpu_usage['max_load'], total_load / self.gpu_usage['n_gpus'])
self.gpu_usage['max_vram_usage'] = max(self.gpu_usage['max_vram_usage'], total_memory_usage_gb)
# RAM monitoring
ram_usage = psutil.virtual_memory().used / (1024.0 ** 3) # Get RAM usage in GB
self.gpu_usage['max_ram_usage'] = max(self.gpu_usage.get('max_ram_usage', 0), ram_usage)
# CPU monitoring
cpu_usage = psutil.cpu_percent(interval=None)
self.gpu_usage['max_cpu_usage'] = max(self.gpu_usage.get('max_cpu_usage', 0), cpu_usage)
time.sleep(interval)
def get_current_datetime(self):
# Get the current date and time
now = datetime.now()
# Format it as a string, replacing colons with underscores
datetime_iso = now.strftime('%Y_%m_%dT%H_%M_%S')
return datetime_iso
def stop_monitoring_report_usage(self):
self.gpu_usage['monitoring'] = False
self.monitoring_thread.join()
tool_time = time.time() - self.tool_start_time if self.tool_start_time else 0
num_gpus, gpu_dict, total_vram_gb, capability_score = check_system_gpus()
report = {
'inference_time_s': str(round(self.inference_time, 2)),
'tool_time_s': str(round(tool_time, 2)),
'max_cpu': str(round(self.gpu_usage['max_cpu_usage'], 2)),
'max_ram_gb': str(round(self.gpu_usage['max_ram_usage'], 2)),
'current_time': self.get_current_datetime(),
'n_gpus': self.gpu_usage['n_gpus'],
'total_gpu_vram_gb':total_vram_gb,
'capability_score':capability_score,
}
self.logger.info(f"Inference Time: {round(self.inference_time,2)} seconds")
self.logger.info(f"Tool Time: {round(tool_time,2)} seconds")
self.logger.info(f"Max CPU Usage: {round(self.gpu_usage['max_cpu_usage'],2)}%")
self.logger.info(f"Max RAM Usage: {round(self.gpu_usage['max_ram_usage'],2)}GB")
if self.has_GPU:
report.update({'max_gpu_load': str(round(self.gpu_usage['max_load'] * 100, 2))})
report.update({'max_gpu_vram_gb': str(round(self.gpu_usage['max_vram_usage'], 2))})
self.logger.info(f"Max GPU Load: {round(self.gpu_usage['max_load'] * 100, 2)}%")
self.logger.info(f"Max GPU Memory Usage: {round(self.gpu_usage['max_vram_usage'], 2)}GB")
else:
report.update({'max_gpu_load': '0'})
report.update({'max_gpu_vram_gb': '0'})
return report
def check_system_gpus():
print(f"Torch CUDA: {torch.cuda.is_available()}")
# if not torch.cuda.is_available():
# return 0, {}, 0, "no_gpu"
GPUs = GPUtil.getGPUs()
num_gpus = len(GPUs)
gpu_dict = {}
total_vram = 0
for i, gpu in enumerate(GPUs):
gpu_vram = gpu.memoryTotal # VRAM in MB
gpu_dict[f"GPU_{i}"] = f"{gpu_vram / 1024} GB" # Convert to GB
total_vram += gpu_vram
total_vram_gb = total_vram / 1024 # Convert total VRAM to GB
capability_score_map = {
"no_gpu": 0,
"class_8GB": 10,
"class_12GB": 14,
"class_16GB": 18,
"class_24GB": 26,
"class_48GB": 50,
"class_96GB": 100,
"class_96GBplus": float('inf'), # Use infinity to represent any value greater than 96GB
}
# Determine the capability score based on the total VRAM
capability_score = "no_gpu"
for score, vram in capability_score_map.items():
if total_vram_gb <= vram:
capability_score = score
break
else:
capability_score = "class_max"
return num_gpus, gpu_dict, total_vram_gb, capability_score
if __name__ == '__main__':
num_gpus, gpu_dict, total_vram_gb, capability_score = check_system_gpus()
print(f"Number of GPUs: {num_gpus}")
print(f"GPU Details: {gpu_dict}")
print(f"Total VRAM: {total_vram_gb} GB")
print(f"Capability Score: {capability_score}")
|