File size: 12,380 Bytes
87c3140
 
 
 
 
 
 
 
 
e91ac58
87c3140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import json, os, time, uuid
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import chromadb
from chromadb.config import Settings
from chromadb.utils import embedding_functions
from InstructorEmbedding import INSTRUCTOR
from langchain_community.vectorstores import Chroma
''' 
If there is a transformers install error:
pip install transformers==4.29.2
Python 3.8 and above will need to upgrade the transformers to 4.2x.xx
https://github.com/huggingface/transformers/issues/11799

The goal is to creat a domain knowledge database based on existing transcribed labels.

I modify the domain knowledge (an xlsx file) so that each row is embedded in a way that most closely
resembles the raw OCR output, since that is what will be used to query against the db.

Once the closest row is found, I use the id to go back to the xlsx and take the whole row, converting
it into a dictionary similar to the desired output from the LLM.

This dict is then added to the prompt as a hint for the LLM. 
'''

'''
pip uninstall protobuf
pip install protobuf==3.19.5 
'''
class VoucherVisionEmbedding:
    # def __init__(self, db_name, path_domain_knowledge, logger, build_new_db=False, model_name="hkunlp/instructor-xl", device="cuda"):
    #     DB_DIR = os.path.join(os.path.dirname(__file__), db_name)

    #     client_settings = chromadb.config.Settings(
    #         chroma_db_impl="duckdb+parquet",
    #         persist_directory=DB_DIR,
    #         anonymized_telemetry=False
    #     )
    #     embeddings = embedding_functions.InstructorEmbeddingFunction(model_name=model_name, device=device)

    #     self.collection = Chroma(
    #         collection_name="langchain_store",
    #         embedding_function=embeddings,
    #         client_settings=client_settings,
    #         persist_directory=DB_DIR,
    #     )

    #     total_rows = len(self.domain_knowledge)
    #     for index, row in self.domain_knowledge.iterrows():
    #         try:
    #             self.logger.info(f"[Creating New Embedding DB] --- Adding Row {index+1}/{total_rows}")
    #         except:
    #             print(f"Row {index+1}/{total_rows}")
    #         id = str(row[0])
    #         document = str(' '.join(row[1:][row[1:].notna()].astype(str)))

    #     self.collection.add_texts(document, None, id, embedding=embeddings)
    #     self.collection.persist()
    #     print(self.collection)

    def __init__(self, db_name, path_domain_knowledge, logger, build_new_db=False, model_name="hkunlp/instructor-xl", device="cuda"):
        DB_DIR = os.path.join(os.path.dirname(__file__), db_name)
        self.logger = logger
        self.path_domain_knowledge = path_domain_knowledge
        self.client = chromadb.PersistentClient(path=DB_DIR, 
                                                settings=Settings(anonymized_telemetry=False))
        
        ef = embedding_functions.InstructorEmbeddingFunction(model_name=model_name, device=device)
        self.domain_knowledge = pd.read_excel(path_domain_knowledge).fillna('').astype(str)
        
        if build_new_db:
            self.logger.info(f"Creating new DB from {self.path_domain_knowledge}")
            self.collection = self.client.create_collection(name=db_name, embedding_function=ef, metadata={"hnsw:space": "cosine"})
            self.create_db_from_xlsx()
        else:
            try:
                self.collection = self.client.get_collection(name=db_name, embedding_function=ef)
            except:
                self.logger.error(f"Embedding database not found! Creating new DB from {self.path_domain_knowledge}")
                self.collection = self.client.create_collection(name=db_name, embedding_function=ef, metadata={"hnsw:space": "cosine"})
                self.create_db_from_xlsx()


    def add_document(self, document, metadata, id):
        id = str(id)
        existing_documents = self.collection.get()
        if id not in existing_documents['ids']:
            try:
                self.collection.add(documents=[document], ids=[id])
            except Exception as e:
                self.logger.error(f"Error while adding document {id}: {str(e)}")


            # try:
            #     self.collection.add(documents=[document], ids=[id])
            # except:
            #     try:
            #         time.sleep(0.1)
            #         self.collection.add(documents=[document], ids=[id])
            #     except:
            #         try:
            #             self.logger.info(f"[Embedding Add Doc] --- Failed, skipping: {id}")
            #         except:
            #             print(f"Failed, skipping: {id}")
        else:
            try:
                self.logger.info(f"[Embedding Add Doc] --- ID already exists in the collection: {id}")
            except:
                print(f"ID already exists in the collection: {id}")


    def query_db(self, query_text, n_results):
        results = self.collection.query(query_texts=[query_text], n_results=n_results)

        self.similarity = round(results['distances'][0][0],3)
        self.similarity_exact = results['distances'][0][0]
        try:
            self.logger.info(f"[Embedding Search] --- Similarity (close to zero is best) {self.similarity}")
        except:
            print(f"Similarity (close to zero is best) --- {self.similarity}")

        self.domain_knowledge.iloc[:, 0] = self.domain_knowledge.iloc[:, 0].astype(str)
        
        # Initialize an empty list to hold dictionaries
        for id in results['ids']:
            row_dicts = self._get_row_from_df(id)
            if not row_dicts:
                # try:
                #     self.logger.info(f"[Embedding Search] --- Similar Dictionary\n{row_dicts}")
                # except:
                #     print(row_dicts)
            # else:
                try:
                    self.logger.info(f"[Embedding Search] --- No row found for id {id}")
                except:
                    print(f"No row found for id {id}")

        # Return the list of dictionaries if n_results > 1, else return single dictionary
        if n_results > 1:
            return row_dicts
        else:
            return row_dicts[0] if row_dicts else None

    def create_db_from_xlsx(self):
        total_rows = len(self.domain_knowledge)
        for index, row in self.domain_knowledge.iterrows():
            try:
                self.logger.info(f"[Creating New Embedding DB] --- Adding Row {index+1}/{total_rows}")
            except:
                print(f"Row {index+1}/{total_rows}")
            id = str(row.iloc[0])
            document = str(' '.join(row[0:][row[0:].notna()].astype(str)))
            self.add_document(document, None, id)

    def get_similarity(self):
        return self.similarity_exact
    
    def _get_row_from_df(self, ids):
        row_dicts = []  # initialize an empty list to hold dictionaries
        for id in ids:
            row = self.domain_knowledge[self.domain_knowledge.iloc[:, 0] == id]
            if not row.empty:
                row_dict = row.iloc[0].to_dict()
                row_dict.pop('Catalog Number', None)
                for key in row_dict:
                    if pd.isna(row_dict[key]):
                        row_dict[key] = ''
                row_dicts.append(row_dict)  # append the dictionary to the list
        return row_dicts if row_dicts else None  # return the list of dictionaries or None if it's empty

    # def _get_row_from_df(self, ids):
    #     for id in ids:
    #         row = self.domain_knowledge[self.domain_knowledge.iloc[:, 0] == id]
    #         if not row.empty:
    #             row_dict = row.iloc[0].to_dict()
    #             row_dict.pop('Catalog Number', None)
    #             for key in row_dict:
    #                 if pd.isna(row_dict[key]):
    #                     row_dict[key] = ''
    #             return row_dict
    #     return None
    



class VoucherVisionEmbeddingTest:
    def __init__(self, ground_truth_dir, llm_output_dir, model_name="hkunlp/instructor-xl"):
        self.ground_truth_dir = ground_truth_dir
        self.llm_output_dir = llm_output_dir
        self.model_name = model_name
        self.model = INSTRUCTOR(model_name, device="cuda")
        self.instruction = "Represent the Science json dictionary document:"

    def compare_texts(self, ground_truth_text, predicted_text):
        # Convert the texts to embeddings using the given model
        ground_truth_embedding = self.model.encode([[self.instruction,ground_truth_text]])
        predicted_embedding = self.model.encode([[self.instruction,predicted_text]])

        # Compute the cosine similarity between the two embeddings
        similarity = cosine_similarity(ground_truth_embedding, predicted_embedding)

        return similarity[0][0]
    
    @staticmethod
    def json_to_text(json_dict):
        return str(json_dict)
    
    def get_max_difference(self, similarities):
        differences = [abs(1 - sim) for sim in similarities]
        return max(differences)

    def evaluate(self):
        # Get a list of all ground truth and LLM output files
        ground_truth_files = os.listdir(self.ground_truth_dir)
        llm_output_files = os.listdir(self.llm_output_dir)

        # Ensure file lists are sorted so they match up correctly
        ground_truth_files.sort()
        llm_output_files.sort()

        similarities = []
        key_similarities = []  # List to store key similarity

        for ground_truth_file, llm_output_file in zip(ground_truth_files, llm_output_files):
            # Read the files and convert them to text
            with open(os.path.join(self.ground_truth_dir, ground_truth_file), 'r') as f:
                ground_truth_dict = json.load(f)
                ground_truth_text = self.json_to_text(ground_truth_dict)
            with open(os.path.join(self.llm_output_dir, llm_output_file), 'r') as ff:
                llm_output_dict = json.load(ff)
                llm_output_text = self.json_to_text(llm_output_dict)

            # Compute the similarity between the ground truth and the LLM output
            similarity = self.compare_texts(ground_truth_text, llm_output_text)

            # Clip and round to mitigate/smudge floating-point precision limitations
            similarity = np.clip(similarity, -1.0, 1.0)
            similarity = np.round(similarity, 6)

            similarities.append(similarity)

            # Compare keys
            ground_truth_keys = ', '.join(sorted(ground_truth_dict.keys()))
            llm_output_keys = ', '.join(sorted(llm_output_dict.keys()))
            key_similarity = self.compare_texts(ground_truth_keys, llm_output_keys)
            key_similarity = np.clip(key_similarity, -1.0, 1.0)
            key_similarity = np.round(key_similarity, 6)
            key_similarities.append(key_similarity)

        # Compute the mean similarity
        mean_similarity = np.mean(similarities)
        mean_key_similarity = np.mean(key_similarities)

        max_diff = self.get_max_difference(similarities)
        max_diff_key = self.get_max_difference(key_similarities)

        return mean_similarity, max_diff, similarities, mean_key_similarity, max_diff_key, key_similarities


    

if __name__ == '__main__':
    # db_name = "VV_all_asia_minimal"
    db_name = "all_asia_minimal"
    path_domain_knowledge = 'D:/Dropbox/LeafMachine2/leafmachine2/transcription/domain_knowledge/AllAsiaMinimalasof25May2023_2__FOR-EMBEDDING.xlsx'
    # path_domain_knowledge = 'D:/Dropbox/LeafMachine2/leafmachine2/transcription/domain_knowledge/AllAsiaMinimalasof25May2023_2__TRIMMEDtiny.xlsx'

    build_new_db = False


    VVE = VoucherVisionEmbedding(db_name, path_domain_knowledge, build_new_db)

    test_query = "Golden Thread\nHerbaria of Michigan State University (MSC) and\nUniversiti Kebangsaan Malaysia, Sabah Campus (UKMS)\nUNITED STATES\n3539788\nNATIONAL HERBARIUM\nPLANTS OF BORNEO\nBrookea tomentosa Benth.\nMalaysia. Sabah. Beaufort District: Beaufort Hill. 5°22'N,\n115°45'E. Elev. 200 m. Burned logged dipterocarp forest.\nCrocker Formation. Small tree, corolla cream.\nDet. at K, 1986\n28 August 1983\nWith: Reed S. Beaman and Teofila E. Beamann\nJohn H. Beaman 6844"

    domain_knowledge_example = VVE.query_db(test_query, 1)