Spaces:
Running
Running
File size: 12,380 Bytes
87c3140 e91ac58 87c3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import json, os, time, uuid
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from transformers import AutoTokenizer, AutoModel
import chromadb
from chromadb.config import Settings
from chromadb.utils import embedding_functions
from InstructorEmbedding import INSTRUCTOR
from langchain_community.vectorstores import Chroma
'''
If there is a transformers install error:
pip install transformers==4.29.2
Python 3.8 and above will need to upgrade the transformers to 4.2x.xx
https://github.com/huggingface/transformers/issues/11799
The goal is to creat a domain knowledge database based on existing transcribed labels.
I modify the domain knowledge (an xlsx file) so that each row is embedded in a way that most closely
resembles the raw OCR output, since that is what will be used to query against the db.
Once the closest row is found, I use the id to go back to the xlsx and take the whole row, converting
it into a dictionary similar to the desired output from the LLM.
This dict is then added to the prompt as a hint for the LLM.
'''
'''
pip uninstall protobuf
pip install protobuf==3.19.5
'''
class VoucherVisionEmbedding:
# def __init__(self, db_name, path_domain_knowledge, logger, build_new_db=False, model_name="hkunlp/instructor-xl", device="cuda"):
# DB_DIR = os.path.join(os.path.dirname(__file__), db_name)
# client_settings = chromadb.config.Settings(
# chroma_db_impl="duckdb+parquet",
# persist_directory=DB_DIR,
# anonymized_telemetry=False
# )
# embeddings = embedding_functions.InstructorEmbeddingFunction(model_name=model_name, device=device)
# self.collection = Chroma(
# collection_name="langchain_store",
# embedding_function=embeddings,
# client_settings=client_settings,
# persist_directory=DB_DIR,
# )
# total_rows = len(self.domain_knowledge)
# for index, row in self.domain_knowledge.iterrows():
# try:
# self.logger.info(f"[Creating New Embedding DB] --- Adding Row {index+1}/{total_rows}")
# except:
# print(f"Row {index+1}/{total_rows}")
# id = str(row[0])
# document = str(' '.join(row[1:][row[1:].notna()].astype(str)))
# self.collection.add_texts(document, None, id, embedding=embeddings)
# self.collection.persist()
# print(self.collection)
def __init__(self, db_name, path_domain_knowledge, logger, build_new_db=False, model_name="hkunlp/instructor-xl", device="cuda"):
DB_DIR = os.path.join(os.path.dirname(__file__), db_name)
self.logger = logger
self.path_domain_knowledge = path_domain_knowledge
self.client = chromadb.PersistentClient(path=DB_DIR,
settings=Settings(anonymized_telemetry=False))
ef = embedding_functions.InstructorEmbeddingFunction(model_name=model_name, device=device)
self.domain_knowledge = pd.read_excel(path_domain_knowledge).fillna('').astype(str)
if build_new_db:
self.logger.info(f"Creating new DB from {self.path_domain_knowledge}")
self.collection = self.client.create_collection(name=db_name, embedding_function=ef, metadata={"hnsw:space": "cosine"})
self.create_db_from_xlsx()
else:
try:
self.collection = self.client.get_collection(name=db_name, embedding_function=ef)
except:
self.logger.error(f"Embedding database not found! Creating new DB from {self.path_domain_knowledge}")
self.collection = self.client.create_collection(name=db_name, embedding_function=ef, metadata={"hnsw:space": "cosine"})
self.create_db_from_xlsx()
def add_document(self, document, metadata, id):
id = str(id)
existing_documents = self.collection.get()
if id not in existing_documents['ids']:
try:
self.collection.add(documents=[document], ids=[id])
except Exception as e:
self.logger.error(f"Error while adding document {id}: {str(e)}")
# try:
# self.collection.add(documents=[document], ids=[id])
# except:
# try:
# time.sleep(0.1)
# self.collection.add(documents=[document], ids=[id])
# except:
# try:
# self.logger.info(f"[Embedding Add Doc] --- Failed, skipping: {id}")
# except:
# print(f"Failed, skipping: {id}")
else:
try:
self.logger.info(f"[Embedding Add Doc] --- ID already exists in the collection: {id}")
except:
print(f"ID already exists in the collection: {id}")
def query_db(self, query_text, n_results):
results = self.collection.query(query_texts=[query_text], n_results=n_results)
self.similarity = round(results['distances'][0][0],3)
self.similarity_exact = results['distances'][0][0]
try:
self.logger.info(f"[Embedding Search] --- Similarity (close to zero is best) {self.similarity}")
except:
print(f"Similarity (close to zero is best) --- {self.similarity}")
self.domain_knowledge.iloc[:, 0] = self.domain_knowledge.iloc[:, 0].astype(str)
# Initialize an empty list to hold dictionaries
for id in results['ids']:
row_dicts = self._get_row_from_df(id)
if not row_dicts:
# try:
# self.logger.info(f"[Embedding Search] --- Similar Dictionary\n{row_dicts}")
# except:
# print(row_dicts)
# else:
try:
self.logger.info(f"[Embedding Search] --- No row found for id {id}")
except:
print(f"No row found for id {id}")
# Return the list of dictionaries if n_results > 1, else return single dictionary
if n_results > 1:
return row_dicts
else:
return row_dicts[0] if row_dicts else None
def create_db_from_xlsx(self):
total_rows = len(self.domain_knowledge)
for index, row in self.domain_knowledge.iterrows():
try:
self.logger.info(f"[Creating New Embedding DB] --- Adding Row {index+1}/{total_rows}")
except:
print(f"Row {index+1}/{total_rows}")
id = str(row.iloc[0])
document = str(' '.join(row[0:][row[0:].notna()].astype(str)))
self.add_document(document, None, id)
def get_similarity(self):
return self.similarity_exact
def _get_row_from_df(self, ids):
row_dicts = [] # initialize an empty list to hold dictionaries
for id in ids:
row = self.domain_knowledge[self.domain_knowledge.iloc[:, 0] == id]
if not row.empty:
row_dict = row.iloc[0].to_dict()
row_dict.pop('Catalog Number', None)
for key in row_dict:
if pd.isna(row_dict[key]):
row_dict[key] = ''
row_dicts.append(row_dict) # append the dictionary to the list
return row_dicts if row_dicts else None # return the list of dictionaries or None if it's empty
# def _get_row_from_df(self, ids):
# for id in ids:
# row = self.domain_knowledge[self.domain_knowledge.iloc[:, 0] == id]
# if not row.empty:
# row_dict = row.iloc[0].to_dict()
# row_dict.pop('Catalog Number', None)
# for key in row_dict:
# if pd.isna(row_dict[key]):
# row_dict[key] = ''
# return row_dict
# return None
class VoucherVisionEmbeddingTest:
def __init__(self, ground_truth_dir, llm_output_dir, model_name="hkunlp/instructor-xl"):
self.ground_truth_dir = ground_truth_dir
self.llm_output_dir = llm_output_dir
self.model_name = model_name
self.model = INSTRUCTOR(model_name, device="cuda")
self.instruction = "Represent the Science json dictionary document:"
def compare_texts(self, ground_truth_text, predicted_text):
# Convert the texts to embeddings using the given model
ground_truth_embedding = self.model.encode([[self.instruction,ground_truth_text]])
predicted_embedding = self.model.encode([[self.instruction,predicted_text]])
# Compute the cosine similarity between the two embeddings
similarity = cosine_similarity(ground_truth_embedding, predicted_embedding)
return similarity[0][0]
@staticmethod
def json_to_text(json_dict):
return str(json_dict)
def get_max_difference(self, similarities):
differences = [abs(1 - sim) for sim in similarities]
return max(differences)
def evaluate(self):
# Get a list of all ground truth and LLM output files
ground_truth_files = os.listdir(self.ground_truth_dir)
llm_output_files = os.listdir(self.llm_output_dir)
# Ensure file lists are sorted so they match up correctly
ground_truth_files.sort()
llm_output_files.sort()
similarities = []
key_similarities = [] # List to store key similarity
for ground_truth_file, llm_output_file in zip(ground_truth_files, llm_output_files):
# Read the files and convert them to text
with open(os.path.join(self.ground_truth_dir, ground_truth_file), 'r') as f:
ground_truth_dict = json.load(f)
ground_truth_text = self.json_to_text(ground_truth_dict)
with open(os.path.join(self.llm_output_dir, llm_output_file), 'r') as ff:
llm_output_dict = json.load(ff)
llm_output_text = self.json_to_text(llm_output_dict)
# Compute the similarity between the ground truth and the LLM output
similarity = self.compare_texts(ground_truth_text, llm_output_text)
# Clip and round to mitigate/smudge floating-point precision limitations
similarity = np.clip(similarity, -1.0, 1.0)
similarity = np.round(similarity, 6)
similarities.append(similarity)
# Compare keys
ground_truth_keys = ', '.join(sorted(ground_truth_dict.keys()))
llm_output_keys = ', '.join(sorted(llm_output_dict.keys()))
key_similarity = self.compare_texts(ground_truth_keys, llm_output_keys)
key_similarity = np.clip(key_similarity, -1.0, 1.0)
key_similarity = np.round(key_similarity, 6)
key_similarities.append(key_similarity)
# Compute the mean similarity
mean_similarity = np.mean(similarities)
mean_key_similarity = np.mean(key_similarities)
max_diff = self.get_max_difference(similarities)
max_diff_key = self.get_max_difference(key_similarities)
return mean_similarity, max_diff, similarities, mean_key_similarity, max_diff_key, key_similarities
if __name__ == '__main__':
# db_name = "VV_all_asia_minimal"
db_name = "all_asia_minimal"
path_domain_knowledge = 'D:/Dropbox/LeafMachine2/leafmachine2/transcription/domain_knowledge/AllAsiaMinimalasof25May2023_2__FOR-EMBEDDING.xlsx'
# path_domain_knowledge = 'D:/Dropbox/LeafMachine2/leafmachine2/transcription/domain_knowledge/AllAsiaMinimalasof25May2023_2__TRIMMEDtiny.xlsx'
build_new_db = False
VVE = VoucherVisionEmbedding(db_name, path_domain_knowledge, build_new_db)
test_query = "Golden Thread\nHerbaria of Michigan State University (MSC) and\nUniversiti Kebangsaan Malaysia, Sabah Campus (UKMS)\nUNITED STATES\n3539788\nNATIONAL HERBARIUM\nPLANTS OF BORNEO\nBrookea tomentosa Benth.\nMalaysia. Sabah. Beaufort District: Beaufort Hill. 5°22'N,\n115°45'E. Elev. 200 m. Burned logged dipterocarp forest.\nCrocker Formation. Small tree, corolla cream.\nDet. at K, 1986\n28 August 1983\nWith: Reed S. Beaman and Teofila E. Beamann\nJohn H. Beaman 6844"
domain_knowledge_example = VVE.query_db(test_query, 1) |