Spaces:
Running
Running
File size: 42,966 Bytes
87c3140 93fd830 87c3140 93fd830 87c3140 cac5f9c 87c3140 cac5f9c 87c3140 cac5f9c 87c3140 cac5f9c 87c3140 cac5f9c 87c3140 cac5f9c 87c3140 93fd830 87c3140 93fd830 87c3140 93fd830 87c3140 cac5f9c 87c3140 93fd830 87c3140 93fd830 87c3140 93fd830 87c3140 93fd830 87c3140 93fd830 87c3140 93fd830 87c3140 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
import openai
import os, sys, json, inspect, glob, tiktoken, shutil, yaml
import openpyxl
from openpyxl import Workbook, load_workbook
import google.generativeai as palm
from langchain.chat_models import AzureChatOpenAI
from google.oauth2 import service_account
currentdir = os.path.dirname(os.path.abspath(
inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
parentdir = os.path.dirname(parentdir)
sys.path.append(parentdir)
from general_utils import get_cfg_from_full_path, num_tokens_from_string
from embeddings_db import VoucherVisionEmbedding
from OCR_google_cloud_vision import detect_text, overlay_boxes_on_image
from LLM_chatGPT_3_5 import OCR_to_dict, OCR_to_dict_16k
from LLM_PaLM import OCR_to_dict_PaLM
# from LLM_Falcon import OCR_to_dict_Falcon
from prompts import PROMPT_UMICH_skeleton_all_asia, PROMPT_OCR_Organized, PROMPT_UMICH_skeleton_all_asia_GPT4, PROMPT_OCR_Organized_GPT4, PROMPT_JSON
from prompt_catalog import PromptCatalog
'''
* For the prefix_removal, the image names have 'MICH-V-' prior to the barcode, so that is used for matching
but removed for output.
* There is also code active to replace the LLM-predicted "Catalog Number" with the correct number since it is known.
The LLMs to usually assign the barcode to the correct field, but it's not needed since it is already known.
- Look for ####################### Catalog Number pre-defined
'''
'''
Prior to StructuredOutputParser:
response = openai.ChatCompletion.create(
model=MODEL,
temperature = 0,
messages=[
{"role": "system", "content": "You are a helpful assistant acting as a transcription expert and your job is to transcribe herbarium specimen labels based on OCR data and reformat it to meet Darwin Core Archive Standards into a Python dictionary based on certain rules."},
{"role": "user", "content": prompt},
],
max_tokens=2048,
)
# print the model's response
return response.choices[0].message['content']
'''
class VoucherVision():
def __init__(self, cfg, logger, dir_home, path_custom_prompts, Project, Dirs):
self.cfg = cfg
self.logger = logger
self.dir_home = dir_home
self.path_custom_prompts = path_custom_prompts
self.Project = Project
self.Dirs = Dirs
self.headers = None
self.prompt_version = None
self.client = None
self.set_API_keys()
self.setup()
def setup(self):
self.logger.name = f'[Transcription]'
self.logger.info(f'Setting up OCR and LLM')
self.db_name = self.cfg['leafmachine']['project']['embeddings_database_name']
self.path_domain_knowledge = self.cfg['leafmachine']['project']['path_to_domain_knowledge_xlsx']
self.build_new_db = self.cfg['leafmachine']['project']['build_new_embeddings_database']
self.continue_run_from_partial_xlsx = self.cfg['leafmachine']['project']['continue_run_from_partial_xlsx']
self.prefix_removal = self.cfg['leafmachine']['project']['prefix_removal']
self.suffix_removal = self.cfg['leafmachine']['project']['suffix_removal']
self.catalog_numerical_only = self.cfg['leafmachine']['project']['catalog_numerical_only']
self.prompt_version0 = self.cfg['leafmachine']['project']['prompt_version']
self.use_domain_knowledge = self.cfg['leafmachine']['project']['use_domain_knowledge']
self.catalog_name_options = ["Catalog Number", "catalog_number"]
self.utility_headers = ["tokens_in", "tokens_out", "path_to_crop","path_to_original","path_to_content","path_to_helper",]
self.map_prompt_versions()
self.map_dir_labels()
self.map_API_options()
self.init_embeddings()
self.init_transcription_xlsx()
'''Logging'''
self.logger.info(f'Transcribing dataset --- {self.dir_labels}')
self.logger.info(f'Saving transcription batch to --- {self.path_transcription}')
self.logger.info(f'Saving individual transcription files to --- {self.Dirs.transcription_ind}')
self.logger.info(f'Starting transcription...')
self.logger.info(f' LLM MODEL --> {self.version_name}')
self.logger.info(f' Using Azure API --> {self.is_azure}')
self.logger.info(f' Model name passed to API --> {self.model_name}')
self.logger.info(f' API access token is found in PRIVATE_DATA.yaml --> {self.has_key}')
# def map_API_options(self):
# self.chat_version = self.cfg['leafmachine']['LLM_version']
# version_mapping = {
# 'GPT 4': ('OpenAI GPT 4', False, 'GPT_4', self.has_key_openai),
# 'GPT 3.5': ('OpenAI GPT 3.5', False, 'GPT_3_5', self.has_key_openai),
# 'Azure GPT 3.5': ('(Azure) OpenAI GPT 3.5', True, 'Azure_GPT_3_5', self.has_key_azure_openai),
# 'Azure GPT 4': ('(Azure) OpenAI GPT 4', True, 'Azure_GPT_4', self.has_key_azure_openai),
# 'PaLM 2': ('Google PaLM 2', None, None, self.has_key_palm2)
# }
# if self.chat_version not in version_mapping:
# supported_LLMs = ", ".join(version_mapping.keys())
# raise Exception(f"Unsupported LLM: {self.chat_version}. Requires one of: {supported_LLMs}")
# self.version_name, self.is_azure, self.model_name, self.has_key = version_mapping[self.chat_version]
def map_API_options(self):
self.chat_version = self.cfg['leafmachine']['LLM_version'] # Replace with your env variable for LLM version if needed
# Assuming you have set your environment variables for each key like 'OPENAI_API_KEY', 'AZURE_API_KEY', 'PALM_API_KEY'
openai_api_key = os.getenv('OPENAI_API_KEY')
azure_api_key = os.getenv('AZURE_API_KEY')
palm_api_key = os.getenv('PALM_API_KEY')
version_mapping = {
'GPT 4': ('OpenAI GPT 4', False, 'GPT_4', bool(openai_api_key)),
'GPT 3.5': ('OpenAI GPT 3.5', False, 'GPT_3_5', bool(openai_api_key)),
'Azure GPT 3.5': ('(Azure) OpenAI GPT 3.5', True, 'Azure_GPT_3_5', bool(azure_api_key)),
'Azure GPT 4': ('(Azure) OpenAI GPT 4', True, 'Azure_GPT_4', bool(azure_api_key)),
'PaLM 2': ('Google PaLM 2', None, None, bool(palm_api_key))
}
if self.chat_version not in version_mapping:
supported_llms = ", ".join(version_mapping.keys())
raise Exception(f"Unsupported LLM: {self.chat_version}. Requires one of: {supported_llms}")
self.version_name, self.is_azure, self.model_name, self.has_key = version_mapping[self.chat_version]
def map_prompt_versions(self):
self.prompt_version_map = {
"Version 1": "prompt_v1_verbose",
"Version 1 No Domain Knowledge": "prompt_v1_verbose_noDomainKnowledge",
"Version 2": "prompt_v2_json_rules",
"Version 1 PaLM 2": 'prompt_v1_palm2',
"Version 1 PaLM 2 No Domain Knowledge": 'prompt_v1_palm2_noDomainKnowledge',
"Version 2 PaLM 2": 'prompt_v2_palm2',
}
self.prompt_version = self.prompt_version_map.get(self.prompt_version0, self.path_custom_prompts)
self.is_predefined_prompt = self.is_in_prompt_version_map(self.prompt_version)
def is_in_prompt_version_map(self, value):
return value in self.prompt_version_map.values()
def init_embeddings(self):
if self.use_domain_knowledge:
self.logger.info(f'*** USING DOMAIN KNOWLEDGE ***')
self.logger.info(f'*** Initializing vector embeddings database ***')
self.initialize_embeddings()
else:
self.Voucher_Vision_Embedding = None
def map_dir_labels(self):
if self.cfg['leafmachine']['use_RGB_label_images']:
self.dir_labels = os.path.join(self.Dirs.save_per_annotation_class,'label')
else:
self.dir_labels = self.Dirs.save_original
# Use glob to get all image paths in the directory
self.img_paths = glob.glob(os.path.join(self.dir_labels, "*"))
def load_rules_config(self):
with open(self.path_custom_prompts, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
return None
def generate_xlsx_headers(self):
# Extract headers from the 'Dictionary' keys in the JSON template rules
xlsx_headers = list(self.rules_config_json['rules']["Dictionary"].keys())
xlsx_headers = xlsx_headers + self.utility_headers
return xlsx_headers
def init_transcription_xlsx(self):
self.HEADERS_v1_n22 = ["Catalog Number","Genus","Species","subspecies","variety","forma","Country","State","County","Locality Name","Min Elevation","Max Elevation","Elevation Units","Verbatim Coordinates","Datum","Cultivated","Habitat","Collectors","Collector Number","Verbatim Date","Date","End Date"]
self.HEADERS_v2_n26 = ["catalog_number","genus","species","subspecies","variety","forma","country","state","county","locality_name","min_elevation","max_elevation","elevation_units","verbatim_coordinates","decimal_coordinates","datum","cultivated","habitat","plant_description","collectors","collector_number","determined_by","multiple_names","verbatim_date","date","end_date"]
self.HEADERS_v1_n22 = self.HEADERS_v1_n22 + self.utility_headers
self.HEADERS_v2_n26 = self.HEADERS_v2_n26 + self.utility_headers
# Initialize output file
self.path_transcription = os.path.join(self.Dirs.transcription,"transcribed.xlsx")
if self.prompt_version in ['prompt_v2_json_rules','prompt_v2_palm2']:
self.headers = self.HEADERS_v2_n26
self.headers_used = 'HEADERS_v2_n26'
elif self.prompt_version in ['prompt_v1_verbose', 'prompt_v1_verbose_noDomainKnowledge','prompt_v1_palm2', 'prompt_v1_palm2_noDomainKnowledge']:
self.headers = self.HEADERS_v1_n22
self.headers_used = 'HEADERS_v1_n22'
else:
if not self.is_predefined_prompt:
# Load the rules configuration
self.rules_config_json = self.load_rules_config()
# Generate the headers from the configuration
self.headers = self.generate_xlsx_headers()
# Set the headers used to the dynamically generated headers
self.headers_used = 'CUSTOM'
else:
# If it's a predefined prompt, raise an exception as we don't have further instructions
raise ValueError("Predefined prompt is not handled in this context.")
self.create_or_load_excel_with_headers(os.path.join(self.Dirs.transcription,"transcribed.xlsx"), self.headers)
def pick_model(self, vendor, nt):
if vendor == 'GPT_3_5':
if nt > 6000:
return "gpt-3.5-turbo-16k-0613", True
else:
return "gpt-3.5-turbo", False
if vendor == 'GPT_4':
return "gpt-4", False
if vendor == 'Azure_GPT_3_5':
return "gpt-35-turbo", False
if vendor == 'Azure_GPT_4':
return "gpt-4", False
def create_or_load_excel_with_headers(self, file_path, headers, show_head=False):
output_dir_names = ['Archival_Components', 'Config_File', 'Cropped_Images', 'Logs', 'Original_Images', 'Transcription']
self.completed_specimens = []
# Check if the file exists and it's not None
if self.continue_run_from_partial_xlsx is not None and os.path.isfile(self.continue_run_from_partial_xlsx):
workbook = load_workbook(filename=self.continue_run_from_partial_xlsx)
sheet = workbook.active
show_head=True
# Identify the 'path_to_crop' column
try:
path_to_crop_col = headers.index('path_to_crop') + 1
path_to_original_col = headers.index('path_to_original') + 1
path_to_content_col = headers.index('path_to_content') + 1
path_to_helper_col = headers.index('path_to_helper') + 1
# self.completed_specimens = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
except ValueError:
print("'path_to_crop' not found in the header row.")
path_to_crop = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
path_to_original = list(sheet.iter_cols(min_col=path_to_original_col, max_col=path_to_original_col, values_only=True, min_row=2))
path_to_content = list(sheet.iter_cols(min_col=path_to_content_col, max_col=path_to_content_col, values_only=True, min_row=2))
path_to_helper = list(sheet.iter_cols(min_col=path_to_helper_col, max_col=path_to_helper_col, values_only=True, min_row=2))
others = [path_to_crop_col, path_to_original_col, path_to_content_col, path_to_helper_col]
jsons = [path_to_content_col, path_to_helper_col]
for cell in path_to_crop[0]:
old_path = cell
new_path = file_path
for dir_name in output_dir_names:
if dir_name in old_path:
old_path_parts = old_path.split(dir_name)
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
self.completed_specimens.append(os.path.basename(updated_path))
print(f"{len(self.completed_specimens)} images are already completed")
### Copy the JSON files over
for colu in jsons:
cell = next(sheet.iter_rows(min_row=2, min_col=colu, max_col=colu))[0]
old_path = cell.value
new_path = file_path
old_path_parts = old_path.split('Transcription')
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + 'Transcription' + old_path_parts[1]
# Copy files
old_dir = os.path.dirname(old_path)
new_dir = os.path.dirname(updated_path)
# Check if old_dir exists and it's a directory
if os.path.exists(old_dir) and os.path.isdir(old_dir):
# Check if new_dir exists. If not, create it.
if not os.path.exists(new_dir):
os.makedirs(new_dir)
# Iterate through all files in old_dir and copy each to new_dir
for filename in os.listdir(old_dir):
shutil.copy2(os.path.join(old_dir, filename), new_dir) # copy2 preserves metadata
### Update the file names
for colu in others:
for row in sheet.iter_rows(min_row=2, min_col=colu, max_col=colu):
for cell in row:
old_path = cell.value
new_path = file_path
for dir_name in output_dir_names:
if dir_name in old_path:
old_path_parts = old_path.split(dir_name)
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
cell.value = updated_path
show_head=True
else:
# Create a new workbook and select the active worksheet
workbook = Workbook()
sheet = workbook.active
# Write headers in the first row
for i, header in enumerate(headers, start=1):
sheet.cell(row=1, column=i, value=header)
self.completed_specimens = []
# Save the workbook
workbook.save(file_path)
if show_head:
print("continue_run_from_partial_xlsx:")
for i, row in enumerate(sheet.iter_rows(values_only=True)):
print(row)
if i == 3: # print the first 5 rows (0-indexed)
print("\n")
break
def add_data_to_excel_from_response(self, path_transcription, response, filename_without_extension, path_to_crop, path_to_content, path_to_helper, nt_in, nt_out):
wb = openpyxl.load_workbook(path_transcription)
sheet = wb.active
# find the next empty row
next_row = sheet.max_row + 1
if isinstance(response, str):
try:
response = json.loads(response)
except json.JSONDecodeError:
print(f"Failed to parse response: {response}")
return
# iterate over headers in the first row
for i, header in enumerate(sheet[1], start=1):
# check if header value is in response keys
if (header.value in response) and (header.value not in self.catalog_name_options): ####################### Catalog Number pre-defined
# check if the response value is a dictionary
if isinstance(response[header.value], dict):
# if it is a dictionary, extract the 'value' field
cell_value = response[header.value].get('value', '')
else:
# if it's not a dictionary, use it directly
cell_value = response[header.value]
try:
# write the value to the cell
sheet.cell(row=next_row, column=i, value=cell_value)
except:
sheet.cell(row=next_row, column=i, value=cell_value[0])
elif header.value in self.catalog_name_options:
# if self.prefix_removal:
# filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
# if self.suffix_removal:
# filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
# if self.catalog_numerical_only:
# filename_without_extension = self.remove_non_numbers(filename_without_extension)
sheet.cell(row=next_row, column=i, value=filename_without_extension)
elif header.value == "path_to_crop":
sheet.cell(row=next_row, column=i, value=path_to_crop)
elif header.value == "path_to_original":
if self.cfg['leafmachine']['use_RGB_label_images']:
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
path_to_original = os.path.join(base, 'Original_Images', fname)
sheet.cell(row=next_row, column=i, value=path_to_original)
else:
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(path_to_crop))
path_to_original = os.path.join(base, 'Original_Images', fname)
sheet.cell(row=next_row, column=i, value=path_to_original)
elif header.value == "path_to_content":
sheet.cell(row=next_row, column=i, value=path_to_content)
elif header.value == "path_to_helper":
sheet.cell(row=next_row, column=i, value=path_to_helper)
elif header.value == "tokens_in":
sheet.cell(row=next_row, column=i, value=nt_in)
elif header.value == "tokens_out":
sheet.cell(row=next_row, column=i, value=nt_out)
# save the workbook
wb.save(path_transcription)
def configure_azure_llm(self):
# Access the secrets from the environment
azure_api_version = os.getenv('AZURE_API_VERSION')
azure_api_key = os.getenv('AZURE_API_KEY')
azure_api_base = os.getenv('AZURE_API_BASE')
azure_organization = os.getenv('AZURE_ORGANIZATION')
azure_api_type = os.getenv('AZURE_API_TYPE')
azure_deployment_name = os.getenv('AZURE_DEPLOYMENT_NAME')
# Check if all required Azure configurations are present
if azure_api_version and azure_api_key and azure_api_base and azure_organization and azure_api_type and azure_deployment_name:
self.llm = AzureChatOpenAI(
deployment_name=azure_deployment_name,
openai_api_version=azure_api_version,
openai_api_key=azure_api_key,
openai_api_base=azure_api_base,
openai_organization=azure_organization,
openai_api_type=azure_api_type
)
else:
raise ValueError("Missing Azure configuration in environment variables.")
def set_API_keys(self):
# Access secrets directly from the environment
openai_api_key = os.getenv('OPENAI_API_KEY')
google_application_credentials = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
palm_api_key = os.getenv('PALM')
self.has_key_openai = openai_api_key is not None
self.has_key_google_OCR = google_application_credentials is not None
self.has_key_palm2 = palm_api_key is not None
if self.has_key_google_OCR:
# Get the credentials JSON from the environment variable
google_credentials_json = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
# Convert the JSON string into a Python dictionary
google_credentials_dict = json.loads(google_credentials_json)
# Create a credentials object
google_credentials = service_account.Credentials.from_service_account_info(google_credentials_dict)
# Now, use this `google_credentials` object to authenticate your Google Cloud services
# For example, if you are using the Google Vision API, it would look like this:
from google.cloud import vision
self.client = vision.ImageAnnotatorClient(credentials=google_credentials)
if os.getenv('AZURE_API_KEY') is not None:
self.configure_azure_llm()
if self.has_key_palm2:
os.environ['PALM'] = palm_api_key
palm.configure(api_key=palm_api_key)
if self.has_key_openai:
openai.api_key = openai_api_key
os.environ["OPENAI_API_KEY"] = openai_api_key
def initialize_embeddings(self):
'''Loading embedding search __init__(self, db_name, path_domain_knowledge, logger, build_new_db=False, model_name="hkunlp/instructor-xl", device="cuda")'''
self.Voucher_Vision_Embedding = VoucherVisionEmbedding(self.db_name, self.path_domain_knowledge, logger=self.logger, build_new_db=self.build_new_db)
def clean_catalog_number(self, data, filename_without_extension):
#Cleans up the catalog number in data if it's a dict
def modify_catalog_key(catalog_key, filename_without_extension, data):
# Helper function to apply modifications on catalog number
if catalog_key not in data:
new_data = {catalog_key: None}
data = {**new_data, **data}
if self.prefix_removal:
filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
if self.suffix_removal:
filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
if self.catalog_numerical_only:
filename_without_extension = self.remove_non_numbers(data[catalog_key])
data[catalog_key] = filename_without_extension
return data
if isinstance(data, dict):
if self.headers_used == 'HEADERS_v1_n22':
return modify_catalog_key("Catalog Number", filename_without_extension, data)
elif self.headers_used in ['HEADERS_v2_n26', 'CUSTOM']:
return modify_catalog_key("catalog_number", filename_without_extension, data)
else:
raise ValueError("Invalid headers used.")
else:
raise TypeError("Data is not of type dict.")
def write_json_to_file(self, filepath, data):
'''Writes dictionary data to a JSON file.'''
with open(filepath, 'w') as txt_file:
if isinstance(data, dict):
data = json.dumps(data, indent=4)
txt_file.write(data)
def create_null_json(self):
return {}
def remove_non_numbers(self, s):
return ''.join([char for char in s if char.isdigit()])
def create_null_row(self, filename_without_extension, path_to_crop, path_to_content, path_to_helper):
json_dict = {header: '' for header in self.headers}
for header, value in json_dict.items():
if header in self.catalog_name_options:
if self.prefix_removal:
json_dict[header] = filename_without_extension.replace(self.prefix_removal, "")
if self.suffix_removal:
json_dict[header] = filename_without_extension.replace(self.suffix_removal, "")
if self.catalog_numerical_only:
json_dict[header] = self.remove_non_numbers(json_dict[header])
elif header == "path_to_crop":
json_dict[header] = path_to_crop
elif header == "path_to_original":
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
path_to_original = os.path.join(base, 'Original_Images', fname)
json_dict[header] = path_to_original
elif header == "path_to_content":
json_dict[header] = path_to_content
elif header == "path_to_helper":
json_dict[header] = path_to_helper
return json_dict
def setup_GPT(self, prompt_version, gpt):
Catalog = PromptCatalog()
self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')
# if prompt_version == 'prompt_v1_verbose':
if self.is_predefined_prompt:
if self.use_domain_knowledge:
# Find a similar example from the domain knowledge
domain_knowledge_example = self.Voucher_Vision_Embedding.query_db(self.OCR, 1)
similarity= self.Voucher_Vision_Embedding.get_similarity()
if prompt_version == 'prompt_v1_verbose':
prompt, n_fields, xlsx_headers = Catalog.prompt_v1_verbose(OCR=self.OCR,domain_knowledge_example=domain_knowledge_example,similarity=similarity)
else:
if prompt_version == 'prompt_v1_verbose_noDomainKnowledge':
prompt, n_fields, xlsx_headers = Catalog.prompt_v1_verbose_noDomainKnowledge(OCR=self.OCR)
elif prompt_version == 'prompt_v2_json_rules':
prompt, n_fields, xlsx_headers = Catalog.prompt_v2_json_rules(OCR=self.OCR)
else:
prompt, n_fields, xlsx_headers = Catalog.prompt_v2_custom(self.path_custom_prompts, OCR=self.OCR)
nt = num_tokens_from_string(prompt, "cl100k_base")
self.logger.info(f'Prompt token length --- {nt}')
MODEL, use_long_form = self.pick_model(gpt, nt)
self.logger.info(f'Waiting for {gpt} API call --- Using {MODEL}')
return MODEL, prompt, use_long_form, n_fields, xlsx_headers, nt
# def setup_GPT(self, opt, gpt):
# if opt == 'dict':
# # Find a similar example from the domain knowledge
# domain_knowledge_example = self.Voucher_Vision_Embedding.query_db(self.OCR, 1)
# similarity= self.Voucher_Vision_Embedding.get_similarity()
# self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')
# # prompt = PROMPT_UMICH_skeleton_all_asia_GPT4(self.OCR, domain_knowledge_example, similarity)
# prompt, n_fields, xlsx_headers =
# nt = num_tokens_from_string(prompt, "cl100k_base")
# self.logger.info(f'Prompt token length --- {nt}')
# MODEL, use_long_form = self.pick_model(gpt, nt)
# ### Direct GPT ###
# self.logger.info(f'Waiting for {MODEL} API call --- Using chatGPT --- Content')
# return MODEL, prompt, use_long_form
# elif opt == 'helper':
# prompt = PROMPT_OCR_Organized_GPT4(self.OCR)
# nt = num_tokens_from_string(prompt, "cl100k_base")
# MODEL, use_long_form = self.pick_model(gpt, nt)
# self.logger.info(f'Length of OCR raw -- {len(self.OCR)}')
# self.logger.info(f'Prompt token length --- {nt}')
# self.logger.info(f'Waiting for {MODEL} API call --- Using chatGPT --- Helper')
# return MODEL, prompt, use_long_form
def use_chatGPT(self, is_azure, progress_report, gpt):
total_tokens_in = 0
total_tokens_out = 0
final_JSON_response = None
if progress_report is not None:
progress_report.set_n_batches(len(self.img_paths))
for i, path_to_crop in enumerate(self.img_paths):
if progress_report is not None:
progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
if os.path.basename(path_to_crop) in self.completed_specimens:
self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
else:
filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper = self.generate_paths(path_to_crop, i)
# Use Google Vision API to get OCR
# self.OCR = detect_text(path_to_crop)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Starting OCR')
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop, self.client)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Finished OCR')
if len(self.OCR) > 0:
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Creating OCR Overlay Image')
self.overlay_image = overlay_boxes_on_image(path_to_crop, self.bounds)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Saved OCR Overlay Image')
self.write_json_to_file(txt_file_path_OCR, {"OCR":self.OCR})
self.write_json_to_file(txt_file_path_OCR_bounds, {"OCR_Bounds":self.bounds})
self.overlay_image.save(jpg_file_path_OCR_helper)
# Setup Dict
MODEL, prompt, use_long_form, n_fields, xlsx_headers, nt_in = self.setup_GPT(self.prompt_version, gpt)
if is_azure:
self.llm.deployment_name = MODEL
else:
self.llm = None
# Send OCR to chatGPT and return formatted dictonary
if use_long_form:
response_candidate = OCR_to_dict_16k(is_azure, self.logger, MODEL, prompt, self.llm, self.prompt_version)
nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
else:
response_candidate = OCR_to_dict(is_azure, self.logger, MODEL, prompt, self.llm, self.prompt_version)
nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
else:
response_candidate = None
nt_out = 0
total_tokens_in += nt_in
total_tokens_out += nt_out
final_JSON_response0 = self.save_json_and_xlsx(response_candidate, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
if response_candidate is not None:
final_JSON_response = final_JSON_response0
self.logger.info(f'Formatted JSON\n{final_JSON_response}')
self.logger.info(f'Finished {MODEL} API calls\n')
if progress_report is not None:
progress_report.reset_batch(f"Batch Complete")
try:
final_JSON_response = json.loads(final_JSON_response.strip('```').replace('json\n', '', 1).replace('json', '', 1))
except:
pass
return final_JSON_response, total_tokens_in, total_tokens_out
def use_PaLM(self, progress_report):
total_tokens_in = 0
total_tokens_out = 0
final_JSON_response = None
if progress_report is not None:
progress_report.set_n_batches(len(self.img_paths))
for i, path_to_crop in enumerate(self.img_paths):
if progress_report is not None:
progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
if os.path.basename(path_to_crop) in self.completed_specimens:
self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
else:
filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper = self.generate_paths(path_to_crop, i)
# Use Google Vision API to get OCR
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop, self.client)
if len(self.OCR) > 0:
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Starting OCR')
self.OCR = self.OCR.replace("\'", "Minutes").replace('\"', "Seconds")
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Finished OCR')
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Creating OCR Overlay Image')
self.overlay_image = overlay_boxes_on_image(path_to_crop, self.bounds)
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- Saved OCR Overlay Image')
self.write_json_to_file(txt_file_path_OCR, {"OCR":self.OCR})
self.write_json_to_file(txt_file_path_OCR_bounds, {"OCR_Bounds":self.bounds})
self.overlay_image.save(jpg_file_path_OCR_helper)
# Send OCR to chatGPT and return formatted dictonary
response_candidate, nt_in = OCR_to_dict_PaLM(self.logger, self.OCR, self.prompt_version, self.Voucher_Vision_Embedding)
nt_out = num_tokens_from_string(response_candidate, "cl100k_base")
else:
response_candidate = None
nt_out = 0
total_tokens_in += nt_in
total_tokens_out += nt_out
final_JSON_response0 = self.save_json_and_xlsx(response_candidate, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
if response_candidate is not None:
final_JSON_response = final_JSON_response0
self.logger.info(f'Formatted JSON\n{final_JSON_response}')
self.logger.info(f'Finished PaLM 2 API calls\n')
if progress_report is not None:
progress_report.reset_batch(f"Batch Complete")
return final_JSON_response, total_tokens_in, total_tokens_out
'''
def use_falcon(self, progress_report):
for i, path_to_crop in enumerate(self.img_paths):
progress_report.update_batch(f"Working on image {i+1} of {len(self.img_paths)}")
if os.path.basename(path_to_crop) in self.completed_specimens:
self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
else:
filename_without_extension = os.path.splitext(os.path.basename(path_to_crop))[0]
txt_file_path = os.path.join(self.Dirs.transcription_ind, filename_without_extension + '.json')
txt_file_path_helper = os.path.join(self.Dirs.transcription_ind_helper, filename_without_extension + '.json')
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- {filename_without_extension}')
# Use Google Vision API to get OCR
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(path_to_crop)
if len(self.OCR) > 0:
self.OCR = self.OCR.replace("\'", "Minutes").replace('\"', "Seconds")
# Send OCR to Falcon and return formatted dictionary
response = OCR_to_dict_Falcon(self.logger, self.OCR, self.Voucher_Vision_Embedding)
# response_helper = OCR_to_helper_Falcon(self.logger, OCR) # Assuming you have a similar helper function for Falcon
response_helper = None
self.logger.info(f'Finished Falcon API calls\n')
else:
response = None
if (response is not None) and (response_helper is not None):
# Save transcriptions to json files
self.write_json_to_file(txt_file_path, response)
# self.write_json_to_file(txt_file_path_helper, response_helper)
# add to the xlsx file
self.add_data_to_excel_from_response(self.path_transcription, response, filename_without_extension, path_to_crop, txt_file_path, txt_file_path_helper)
progress_report.reset_batch()
'''
def generate_paths(self, path_to_crop, i):
filename_without_extension = os.path.splitext(os.path.basename(path_to_crop))[0]
txt_file_path = os.path.join(self.Dirs.transcription_ind, filename_without_extension + '.json')
txt_file_path_OCR = os.path.join(self.Dirs.transcription_ind_OCR, filename_without_extension + '.json')
txt_file_path_OCR_bounds = os.path.join(self.Dirs.transcription_ind_OCR_bounds, filename_without_extension + '.json')
jpg_file_path_OCR_helper = os.path.join(self.Dirs.transcription_ind_OCR_helper, filename_without_extension + '.jpg')
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- {filename_without_extension}')
return filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper
def save_json_and_xlsx(self, response, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out):
if response is None:
response = self.create_null_json()
self.write_json_to_file(txt_file_path, response)
# Then add the null info to the spreadsheet
response_null = self.create_null_row(filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper)
self.add_data_to_excel_from_response(self.path_transcription, response_null, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in=0, nt_out=0)
### Set completed JSON
else:
response = self.clean_catalog_number(response, filename_without_extension)
self.write_json_to_file(txt_file_path, response)
# add to the xlsx file
self.add_data_to_excel_from_response(self.path_transcription, response, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
return response
def process_specimen_batch(self, progress_report):
try:
if self.has_key:
if self.model_name:
final_json_response, total_tokens_in, total_tokens_out = self.use_chatGPT(self.is_azure, progress_report, self.model_name)
else:
final_json_response, total_tokens_in, total_tokens_out = self.use_PaLM(progress_report)
return final_json_response, total_tokens_in, total_tokens_out
else:
self.logger.info(f'No API key found for {self.version_name}')
raise Exception(f"No API key found for {self.version_name}")
except:
if progress_report is not None:
progress_report.reset_batch(f"Batch Failed")
self.logger.error("LLM call failed. Ending batch. process_specimen_batch()")
for handler in self.logger.handlers[:]:
handler.close()
self.logger.removeHandler(handler)
raise
def process_specimen_batch_OCR_test(self, path_to_crop):
for img_filename in os.listdir(path_to_crop):
img_path = os.path.join(path_to_crop, img_filename)
self.OCR, self.bounds, self.text_to_box_mapping = detect_text(img_path, self.client)
def space_saver(cfg, Dirs, logger):
dir_out = cfg['leafmachine']['project']['dir_output']
run_name = Dirs.run_name
path_project = os.path.join(dir_out, run_name)
if cfg['leafmachine']['project']['delete_temps_keep_VVE']:
logger.name = '[DELETE TEMP FILES]'
logger.info("Deleting temporary files. Keeping files required for VoucherVisionEditor.")
delete_dirs = ['Archival_Components', 'Config_File']
for d in delete_dirs:
path_delete = os.path.join(path_project, d)
if os.path.exists(path_delete):
shutil.rmtree(path_delete)
elif cfg['leafmachine']['project']['delete_all_temps']:
logger.name = '[DELETE TEMP FILES]'
logger.info("Deleting ALL temporary files!")
delete_dirs = ['Archival_Components', 'Config_File', 'Original_Images', 'Cropped_Images']
for d in delete_dirs:
path_delete = os.path.join(path_project, d)
if os.path.exists(path_delete):
shutil.rmtree(path_delete)
# Delete the transctiption folder, but keep the xlsx
transcription_path = os.path.join(path_project, 'Transcription')
if os.path.exists(transcription_path):
for item in os.listdir(transcription_path):
item_path = os.path.join(transcription_path, item)
if os.path.isdir(item_path): # if the item is a directory
if os.path.exists(item_path):
shutil.rmtree(item_path) # delete the directory
|