Spaces:
Running
Running
File size: 22,602 Bytes
806953a 9d06861 1d9ab62 9d06861 ae215ea 9d06861 1d9ab62 9d06861 ae215ea 9d06861 ae215ea 9d06861 ae215ea 9d06861 ae215ea 9d06861 ae215ea 9d06861 ae215ea 9d06861 ae215ea 9d06861 ae215ea 9d06861 1d9ab62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
import itertools, wikipediaapi, requests, re, json
from langchain_community.tools import WikipediaQueryRun
from langchain_community.utilities import WikipediaAPIWrapper
# from langchain_community.tools.wikidata.tool import WikidataAPIWrapper, WikidataQueryRun
import cProfile
import pstats
class WikipediaLinks():
def __init__(self, tool_wikipedia, json_file_path_wiki) -> None:
self.is_enabled = tool_wikipedia
self.json_file_path_wiki = json_file_path_wiki
self.wiki_wiki = wikipediaapi.Wikipedia(
user_agent='VoucherVision (merlin@example.com)',
language='en'
)
self.property_to_rank = {
'P225': 'Species',
'P171': 'Family',
'P105': 'Taxon rank',
'P70': 'Genus',
'P75': 'Clade',
'P76': 'Subgenus',
'P67': 'Subfamily',
'P66': 'Tribe',
'P71': 'Subtribe',
'P61': 'Order',
'P72': 'Suborder',
'P73': 'Infraorder',
'P74': 'Superfamily',
'P142': 'Phylum',
'P75': 'Clade',
'P76': 'Subclass',
'P77': 'Infraclass',
'P78': 'Superorder',
'P81': 'Class',
'P82': 'Superclass',
'P84': 'Kingdom',
'P85': 'Superkingdom',
'P86': 'Subkingdom',
'P87': 'Infrakingdom',
'P88': 'Parvkingdom',
'P89': 'Domain',
'P1421': 'GRIN',
'P1070': 'KEW',
'P5037': 'POWOID',
}
def get_label_for_entity_id(self, entity_id):
url = "https://www.wikidata.org/w/api.php"
params = {
"action": "wbgetentities",
"format": "json",
"ids": entity_id,
"props": "labels",
"languages": "en" # Assuming you want the label in English
}
response = requests.get(url, params=params)
data = response.json()
return data['entities'][entity_id]['labels']['en']['value'] if 'en' in data['entities'][entity_id]['labels'] else None
def is_valid_url(self, url):
try:
response = requests.head(url, allow_redirects=True, timeout=5)
# If the response status code is 200, the URL is reachable
return response.status_code == 200
except requests.RequestException as e:
# If there was some issue with the request, such as the domain does not exist
# print(f"URL {url} is not reachable. Error: {e}")
return False
# def get_infobar_data(self, wiki_page_title):
# # Step 1: Extract the Wikidata Item ID from the Wikipedia page
# wiki_api_url = "https://en.wikipedia.org/w/api.php"
# wiki_params = {
# "action": "query",
# "format": "json",
# "titles": wiki_page_title,
# "prop": "revisions",
# "rvprop": "content",
# "rvslots": "*"
# }
# wiki_response = requests.get(wiki_api_url, params=wiki_params)
# wiki_data = wiki_response.json()
# page_key = next(iter(wiki_data['query']['pages']))
# content = wiki_data['query']['pages'][page_key]['revisions'][0]['slots']['main']['*']
# infobox_pattern = re.compile(r'\{\{Infobox.*?\|title\}\}', re.DOTALL)
# match = infobox_pattern.search(content)
# if match:
# wikidata_id = match.group(1) # Returns the full match including the 'Infobox' braces
# else:
# return "Infobox not found"
# # Step 2: Fetch Data from Wikidata Using the Extracted ID
# wikidata_api_url = "https://www.wikidata.org/w/api.php"
# wikidata_params = {
# "action": "wbgetentities",
# "format": "json",
# "ids": wikidata_id,
# "props": "claims" # Adjust as needed to fetch the desired data
# }
# wikidata_response = requests.get(wikidata_api_url, params=wikidata_params)
# wikidata_content = wikidata_response.json()
# classification_full = {}
# classification = {}
# label_cache = {} # Cache for labels
# # Turn this on to see the available properties to decode
# for prop_id, claims in wikidata_content['entities'][wikidata_id]['claims'].items():
# # Assuming the main snak value is what we want
# value = claims[0]['mainsnak']['datavalue']['value']
# if isinstance(value, dict): # If the value is an entity ID
# # entity_id = value['id']
# # entity_id = value['id']
# if prop_id not in label_cache:
# label_cache[prop_id] = self.get_label_for_entity_id(prop_id)
# classification_full[prop_id] = label_cache[prop_id]
# else:
# classification_full[prop_id] = value
# print(classification_full)
# Map Wikidata properties to the corresponding taxonomic ranks
def convert_to_decimal(self, coord_parts):
lat_deg, lat_min, lat_dir, lon_deg, lon_min, lon_dir = coord_parts[:6]
lat = float(lat_deg) + float(lat_min) / 60
lon = float(lon_deg) + float(lon_min) / 60
if lat_dir == 'S':
lat = -lat
if lon_dir == 'W':
lon = -lon
return f"{lat},{lon}"
def extract_coordinates_and_region(self, coord_string):
# Extract the coordinate parts and region info
coord_parts = re.findall(r'(\d+|\w+)', coord_string)
region_info = re.search(r'region:([^|]+)\|display', coord_string)
if coord_parts and len(coord_parts) >= 6:
# Convert to decimal coordinates
decimal_coords = self.convert_to_decimal(coord_parts)
else:
decimal_coords = "Invalid coordinates format"
region = region_info.group(1) if region_info else "Region not found"
return decimal_coords, region
def parse_infobox(self, infobox_string):
# Split the string into lines
lines = infobox_string.split('\n')
# Dictionary to store the extracted data
infobox_data = {}
# Iterate over each line
for line in lines:
# Split the line into key and value
parts = line.split('=', 1)
# If the line is properly formatted with a key and value
if len(parts) == 2:
key = parts[0].strip()
key = key.split(' ')[1]
value = parts[1].strip()
# Handling special cases like links or coordinates
if value.startswith('[[') and value.endswith(']]'):
# Extracting linked article titles
value = value[2:-2].split('|')[0]
elif value.startswith('{{coord') and value.endswith('}}'):
# Extracting coordinates
value = value[7:-2]
elif value.startswith('[') and value.endswith(']') and ('http' in value):
value = value[1:-1]
url_parts = value.split(" ")
infobox_data['url_location'] = next((part for part in url_parts if 'http' in part), None)
if key == 'coordinates':
decimal_coordinates, region = self.extract_coordinates_and_region(value)
infobox_data['region'] = region
infobox_data['decimal_coordinates'] = decimal_coordinates
key = self.sanitize(key)
value = self.sanitize(value)
value = self.remove_html_and_wiki_markup(value)
# Add to dictionary
infobox_data[key] = value
return infobox_data
def get_infobox_data(self, wiki_page_title, opt=None):
wiki_api_url = "https://en.wikipedia.org/w/api.php"
wiki_params = {
"action": "query",
"format": "json",
"titles": wiki_page_title,
"prop": "revisions",
"rvprop": "content",
"rvslots": "*"
}
try:
wiki_response = requests.get(wiki_api_url, params=wiki_params)
wiki_response.raise_for_status() # Check for HTTP errors
except requests.RequestException as e:
return f"Error fetching data: {e}"
wiki_data = wiki_response.json()
page_key = next(iter(wiki_data['query']['pages']), None)
if page_key is None or "missing" in wiki_data['query']['pages'][page_key]:
return "Page not found"
content = wiki_data['query']['pages'][page_key]['revisions'][0]['slots']['main']['*']
infobox_pattern = re.compile(r'\{\{Infobox.*?\}\}', re.DOTALL)
match = infobox_pattern.search(content)
if match:
infobox_content = match.group()
else:
self.infobox_data = {}
self.infobox_data_locality = {}
return "Infobox not found"
if opt is None:
self.infobox_data = self.parse_infobox(infobox_content)
else:
self.infobox_data_locality = self.parse_infobox(infobox_content)
# Example usage
# for prop_id, claims in wikidata_content['entities'][wikidata_id]['claims'].items():
# # Get the taxonomic rank from the mapping
# rank = self.property_to_rank.get(prop_id)
# if rank:
# value = claims[0]['mainsnak']['datavalue']['value']
# if isinstance(value, dict): # If the value is an entity ID
# entity_id = value['id']
# if entity_id not in label_cache:
# label_cache[entity_id] = self.get_label_for_entity_id(entity_id)
# classification[rank] = label_cache[entity_id]
# else:
# classification[rank] = value
# try:
# unknown_link = "https://powo.science.kew.org/taxon/" + classification['POWOID']
# if self.is_valid_url(unknown_link):
# classification['POWOID'] = unknown_link
# classification['POWOID_syn'] = unknown_link + '#synonyms'
# except:
# pass
# return classification
def get_taxonbar_data(self, wiki_page_title):
# Step 1: Extract the Wikidata Item ID from the Wikipedia page
wiki_api_url = "https://en.wikipedia.org/w/api.php"
wiki_params = {
"action": "query",
"format": "json",
"titles": wiki_page_title,
"prop": "revisions",
"rvprop": "content",
"rvslots": "*"
}
wiki_response = requests.get(wiki_api_url, params=wiki_params)
wiki_data = wiki_response.json()
page_key = next(iter(wiki_data['query']['pages']))
content = wiki_data['query']['pages'][page_key]['revisions'][0]['slots']['main']['*']
taxonbar_match = re.search(r'\{\{Taxonbar\|from=(Q\d+)\}\}', content)
if not taxonbar_match:
return "Taxonbar not found"
wikidata_id = taxonbar_match.group(1)
# Step 2: Fetch Data from Wikidata Using the Extracted ID
wikidata_api_url = "https://www.wikidata.org/w/api.php"
wikidata_params = {
"action": "wbgetentities",
"format": "json",
"ids": wikidata_id,
"props": "claims" # Adjust as needed to fetch the desired data
}
wikidata_response = requests.get(wikidata_api_url, params=wikidata_params)
wikidata_content = wikidata_response.json()
classification_full = {}
classification = {}
label_cache = {} # Cache for labels
# Turn this on to see the available properties to decode
# for prop_id, claims in wikidata_content['entities'][wikidata_id]['claims'].items():
# # Assuming the main snak value is what we want
# value = claims[0]['mainsnak']['datavalue']['value']
# if isinstance(value, dict): # If the value is an entity ID
# # entity_id = value['id']
# # entity_id = value['id']
# if prop_id not in label_cache:
# label_cache[prop_id] = self.get_label_for_entity_id(prop_id)
# classification_full[prop_id] = label_cache[prop_id]
# else:
# classification_full[prop_id] = value
# print(classification_full)
# Map Wikidata properties to the corresponding taxonomic ranks
for prop_id, claims in wikidata_content['entities'][wikidata_id]['claims'].items():
# Get the taxonomic rank from the mapping
rank = self.property_to_rank.get(prop_id)
if rank:
value = claims[0]['mainsnak']['datavalue']['value']
if isinstance(value, dict): # If the value is an entity ID
entity_id = value['id']
if entity_id not in label_cache:
label_cache[entity_id] = self.get_label_for_entity_id(entity_id)
classification[rank] = label_cache[entity_id]
else:
classification[rank] = value
try:
unknown_link = "https://powo.science.kew.org/taxon/" + classification['POWOID']
if self.is_valid_url(unknown_link):
classification['POWOID'] = unknown_link
classification['POWOID_syn'] = unknown_link + '#synonyms'
except:
pass
return classification
def extract_page_title(self, result_string):
first_line = result_string.split('\n')[0]
page_title = first_line.replace('Page: ', '').strip()
return page_title
def get_wikipedia_url(self, page_title):
page = self.wiki_wiki.page(page_title)
if page.exists():
return page.fullurl
else:
return None
def extract_info_taxa(self, page):
links = []
self.info_packet['WIKI_TAXA']['LINKS'] = {}
self.info_packet['WIKI_TAXA']['DATA'] = {}
self.info_packet['WIKI_TAXA']['DATA'].update(self.get_taxonbar_data(page.title))
# for back in page.backlinks:
# back = self.sanitize(back)
# if ':' not in back:
# link = self.sanitize(self.get_wikipedia_url(back))
# if link not in links:
# links.append(link)
# self.info_packet['WIKI_TAXA']['LINKS'][back] = link
def extract_info_geo(self, page, opt=None):
links = []
self.info_packet['WIKI_GEO']['LINKS'] = {}
if opt is None:
self.get_infobox_data(page.title)
else:
self.get_infobox_data(page.title,opt=opt)
for back in itertools.islice(page.backlinks, 10):
back = self.sanitize(back)
if ':' not in back:
link = self.sanitize(self.get_wikipedia_url(back))
if link not in links:
links.append(link)
self.info_packet['WIKI_GEO']['LINKS'][back] = link
def gather_geo(self, query,opt=None):
if opt is None:
self.info_packet['WIKI_GEO']['DATA'] = {}
else:
self.info_packet['WIKI_LOCALITY']['DATA'] = {}
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
result = wikipedia.run(query)
summary = result.split('Summary:')[1]
summary = self.sanitize(summary)
# print(result)
page_title = self.extract_page_title(result)
page = self.wiki_wiki.page(page_title)
# Do these first, they are less likely to fail
if opt is None:
self.info_packet['WIKI_GEO']['PAGE_LINK'] = self.get_wikipedia_url(page_title)
self.info_packet['WIKI_GEO']['PAGE_TITLE'] = page_title
self.info_packet['WIKI_GEO']['SUMMARY'] = summary
else:
self.info_packet['WIKI_LOCALITY']['PAGE_TITLE'] = page_title
self.info_packet['WIKI_LOCALITY']['PAGE_LINK'] = self.get_wikipedia_url(page_title)
self.info_packet['WIKI_LOCALITY']['SUMMARY'] = summary
# Check if the page exists, get the more complex data. Do it last in case of failure ########################## This might not be useful enough to justify the time
# if page.exists():
# if opt is None:
# self.extract_info_geo(page)
# else:
# self.extract_info_geo(page, opt=opt)
if opt is None:
self.info_packet['WIKI_GEO']['DATA'].update(self.infobox_data)
else:
self.info_packet['WIKI_LOCALITY']['DATA'].update(self.infobox_data_locality)
def gather_taxonomy(self, query):
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
# query = "Tracaulon sagittatum Tracaulon sagittatum"
result = wikipedia.run(query)
summary = result.split('Summary:')[1]
summary = self.sanitize(summary)
# print(result)
page_title = self.extract_page_title(result)
page = self.wiki_wiki.page(page_title)
# Check if the page exists
if page.exists():
self.extract_info_taxa(page)
self.info_packet['WIKI_TAXA']['PAGE_TITLE'] = page_title
self.info_packet['WIKI_TAXA']['PAGE_LINK'] = self.get_wikipedia_url(page_title)
self.info_packet['WIKI_TAXA']['SUMMARY'] = summary
return self.info_packet
def gather_wikipedia_results(self, output):
self.info_packet = {}
self.info_packet['WIKI_TAXA'] = {}
self.info_packet['WIKI_GEO'] = {}
self.info_packet['WIKI_LOCALITY'] = {}
if self.is_enabled:
municipality = output.get('municipality','')
county = output.get('county','')
stateProvince = output.get('stateProvince','')
country = output.get('country','')
locality = output.get('locality','')
order = output.get('order','')
family = output.get('family','')
scientificName = output.get('scientificName','')
genus = output.get('genus','')
specificEpithet = output.get('specificEpithet','')
query_geo = ' '.join([municipality, county, stateProvince, country]).strip()
query_locality = locality.strip()
query_taxa_primary = scientificName.strip()
query_taxa_secondary = ' '.join([genus, specificEpithet]).strip()
query_taxa_tertiary = ' '.join([order, family, genus, specificEpithet]).strip()
# query_taxa = "Tracaulon sagittatum Tracaulon sagittatum"
# query_geo = "Indiana Porter Co."
# query_locality = "Mical Springs edge"
if query_geo:
try:
self.gather_geo(query_geo)
except:
pass
if query_locality:
try:
self.gather_geo(query_locality,'locality')
except:
pass
queries_taxa = [query_taxa_primary, query_taxa_secondary, query_taxa_tertiary]
for q in queries_taxa:
if q:
try:
self.gather_taxonomy(q)
break
except:
pass
# print(self.info_packet)
# return self.info_packet
# self.gather_geo(query_geo)
try:
with open(self.json_file_path_wiki, 'w', encoding='utf-8') as file:
json.dump(self.info_packet, file, indent=4)
except:
sanitized_data = self.sanitize(self.info_packet)
with open(self.json_file_path_wiki, 'w', encoding='utf-8') as file:
json.dump(sanitized_data, file, indent=4)
def sanitize(self, data):
if isinstance(data, dict):
return {self.sanitize(key): self.sanitize(value) for key, value in data.items()}
elif isinstance(data, list):
return [self.sanitize(element) for element in data]
elif isinstance(data, str):
return data.encode('utf-8', 'ignore').decode('utf-8')
else:
return data
def remove_html_and_wiki_markup(self, text):
# Remove HTML tags
clean_text = re.sub(r'<.*?>', '', text)
# Remove Wiki links but keep the text inside
# For example, '[[Greg Abbott]]' becomes 'Greg Abbott'
clean_text = re.sub(r'\[\[(?:[^\]|]*\|)?([^\]|]*)\]\]', r'\1', clean_text)
# Remove Wiki template markup, e.g., '{{nowrap|text}}' becomes 'text'
clean_text = re.sub(r'\{\{(?:[^\}|]*\|)?([^\}|]*)\}\}', r'\1', clean_text)
return clean_text
def validate_wikipedia(tool_wikipedia, json_file_path_wiki, output):
Wiki = WikipediaLinks(tool_wikipedia, json_file_path_wiki)
Wiki.gather_wikipedia_results(output)
if __name__ == '__main__':
test_output = {
"filename": "MICH_7375774_Polygonaceae_Persicaria_",
"catalogNumber": "1439649",
"order": "",
"family": "",
"scientificName": "Tracaulon sagittatum",
"scientificNameAuthorship": "",
"genus": "Tracaulon",
"subgenus": "",
"specificEpithet": "sagittatum",
"infraspecificEpithet": "",
"identifiedBy": "",
"recordedBy": "Marcus W. Lyon, Jr.",
"recordNumber": "TX 11",
"verbatimEventDate": "1927",
"eventDate": "1927-00-00",
"habitat": "wet subdunal woods",
"occurrenceRemarks": "Flowers pink",
"country": "Indiana",
"stateProvince": "Porter Co.",
"county": "",
"municipality": "",
"locality": "Mical Springs edge",
"degreeOfEstablishment": "",
"decimalLatitude": "",
"decimalLongitude": "",
"verbatimCoordinates": "",
"minimumElevationInMeters": "",
"maximumElevationInMeters": ""
}
do_print_profiler = True
if do_print_profiler:
profiler = cProfile.Profile()
profiler.enable()
Wiki = WikipediaLinks('D:/D_Desktop/usda_pdf/test.json')
info_packet= Wiki.gather_wikipedia_results(test_output)
if do_print_profiler:
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumulative')
stats.print_stats(50)
|