Spaces:
Running
Running
import json, os | |
import torch | |
import transformers | |
import gc | |
from transformers import BitsAndBytesConfig | |
from langchain.output_parsers.retry import RetryOutputParser | |
from langchain.prompts import PromptTemplate | |
from langchain_core.output_parsers import JsonOutputParser | |
from huggingface_hub import hf_hub_download | |
from langchain_huggingface import HuggingFacePipeline | |
from vouchervision.utils_LLM import SystemLoadMonitor, run_tools, count_tokens, save_individual_prompt, sanitize_prompt | |
from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template | |
''' | |
Local Pipielines: | |
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines | |
''' | |
class LocalMistralHandler: | |
RETRY_DELAY = 2 # Wait 2 seconds before retrying | |
MAX_RETRIES = 5 # Maximum number of retries | |
STARTING_TEMP = 0.1 | |
TOKENIZER_NAME = None | |
VENDOR = 'mistral' | |
MAX_GPU_MONITORING_INTERVAL = 2 # seconds | |
def __init__(self, cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation): | |
self.cfg = cfg | |
self.tool_WFO = self.cfg['leafmachine']['project']['tool_WFO'] | |
self.tool_GEO = self.cfg['leafmachine']['project']['tool_GEO'] | |
self.tool_wikipedia = self.cfg['leafmachine']['project']['tool_wikipedia'] | |
self.logger = logger | |
self.has_GPU = torch.cuda.is_available() | |
self.monitor = SystemLoadMonitor(logger) | |
self.model_name = model_name | |
self.model_id = f"mistralai/{self.model_name}" | |
huggingface_token = os.getenv("HUGGING_FACE_KEY") | |
if not huggingface_token: | |
self.logger.error("Hugging Face token is not set. Please set it using the HUGGING_FACE_KEY environment variable.") | |
raise ValueError("Hugging Face token is not set.") | |
self.model_path = hf_hub_download(repo_id=self.model_id, repo_type="model", filename="config.json", token=huggingface_token) | |
self.JSON_dict_structure = JSON_dict_structure | |
self.starting_temp = float(self.STARTING_TEMP) | |
self.temp_increment = float(0.2) | |
self.adjust_temp = self.starting_temp | |
system_prompt = "You are a helpful AI assistant who answers queries by returning a JSON dictionary as specified by the user." | |
template = "<s>[INST]{}[/INST]</s>[INST]{}[/INST]".format(system_prompt, "{query}") | |
# Create a prompt from the template so we can use it with Langchain | |
self.prompt = PromptTemplate(template=template, input_variables=["query"]) | |
# Set up a parser | |
self.parser = JsonOutputParser() | |
self._set_config() | |
def _set_config(self): | |
self.config = { | |
'max_new_tokens': 1024, | |
'temperature': self.starting_temp, | |
'seed': 2023, | |
'top_p': 1, | |
'top_k': 40, | |
'do_sample': True, | |
'n_ctx': 4096, | |
'use_4bit': True, | |
'bnb_4bit_compute_dtype': "float16", | |
'bnb_4bit_quant_type': "nf4", | |
'use_nested_quant': False, | |
} | |
compute_dtype = getattr(torch, self.config.get('bnb_4bit_compute_dtype')) | |
self.bnb_config = BitsAndBytesConfig( | |
load_in_4bit=self.config.get('use_4bit'), | |
bnb_4bit_quant_type=self.config.get('bnb_4bit_quant_type'), | |
bnb_4bit_compute_dtype=compute_dtype, | |
bnb_4bit_use_double_quant=self.config.get('use_nested_quant'), | |
) | |
if compute_dtype == torch.float16 and self.config.get('use_4bit'): | |
major, _ = torch.cuda.get_device_capability() | |
self.b_float_opt = torch.bfloat16 if major >= 8 else torch.float16 | |
self._build_model_chain_parser() | |
def _adjust_config(self): | |
new_temp = self.adjust_temp + self.temp_increment | |
self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}') | |
self.adjust_temp += self.temp_increment | |
def _reset_config(self): | |
self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}') | |
self.adjust_temp = self.starting_temp | |
def _build_model_chain_parser(self): | |
self.local_model_pipeline = transformers.pipeline( | |
"text-generation", | |
model=self.model_id, | |
max_new_tokens=self.config.get('max_new_tokens'), | |
top_k=self.config.get('top_k'), | |
top_p=self.config.get('top_p'), | |
do_sample=self.config.get('do_sample'), | |
model_kwargs={"torch_dtype": self.b_float_opt, "quantization_config": self.bnb_config}, | |
) | |
self.local_model = HuggingFacePipeline(pipeline=self.local_model_pipeline) | |
# Set up the retry parser with the runnable | |
self.retry_parser = RetryOutputParser(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES) | |
# Create an llm chain with LLM and prompt | |
self.chain = self.prompt | self.local_model | |
def call_llm_local_MistralAI(self, prompt_template, json_report, paths): | |
json_file_path_wiki, txt_file_path_ind_prompt = paths[-2:] | |
self.json_report = json_report | |
if self.json_report: | |
self.json_report.set_text(text_main=f'Sending request to {self.model_name}') | |
self.monitor.start_monitoring_usage() | |
nt_in = 0 | |
nt_out = 0 | |
for ind in range(self.MAX_RETRIES): | |
try: | |
model_kwargs = {"temperature": self.adjust_temp} | |
results = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs}) | |
output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template) | |
if output is None: | |
self.logger.error(f'Failed to extract JSON from:\n{results}') | |
self._adjust_config() | |
del results | |
else: | |
nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME) | |
nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME) | |
output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure) | |
if output is None: | |
self.logger.error(f'[Attempt {ind + 1}] Failed to extract JSON from:\n{results}') | |
self._adjust_config() | |
else: | |
self.monitor.stop_inference_timer() # Starts tool timer too | |
if self.json_report: | |
self.json_report.set_text(text_main=f'Working on WFO, Geolocation, Links') | |
output_WFO, WFO_record, output_GEO, GEO_record = run_tools( | |
output, self.tool_WFO, self.tool_GEO, self.tool_wikipedia, json_file_path_wiki | |
) | |
save_individual_prompt(sanitize_prompt(prompt_template), txt_file_path_ind_prompt) | |
self.logger.info(f"Formatted JSON:\n{json.dumps(output, indent=4)}") | |
usage_report = self.monitor.stop_monitoring_report_usage() | |
if self.adjust_temp != self.starting_temp: | |
self._reset_config() | |
if self.json_report: | |
self.json_report.set_text(text_main=f'LLM call successful') | |
del results | |
return output, nt_in, nt_out, WFO_record, GEO_record, usage_report | |
except Exception as e: | |
self.logger.error(f'{e}') | |
self._adjust_config() | |
self.logger.info(f"Failed to extract valid JSON after [{self.MAX_RETRIES}] attempts") | |
if self.json_report: | |
self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{self.MAX_RETRIES}] attempts') | |
self.monitor.stop_inference_timer() # Starts tool timer too | |
usage_report = self.monitor.stop_monitoring_report_usage() | |
if self.json_report: | |
self.json_report.set_text(text_main=f'LLM call failed') | |
self._reset_config() | |
return None, nt_in, nt_out, None, None, usage_report |