VoucherVision / vouchervision /utils_VoucherVision.py
phyloforfun's picture
add mammal prompt, fix bug
bd72568
raw
history blame
50.4 kB
import openai
import os, json, glob, shutil, yaml, torch, logging
import openpyxl
from openpyxl import Workbook, load_workbook
import vertexai
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
from langchain_openai import AzureChatOpenAI
from google.oauth2 import service_account
from transformers import AutoTokenizer, AutoModel
from vouchervision.LLM_OpenAI import OpenAIHandler
from vouchervision.LLM_GooglePalm2 import GooglePalm2Handler
from vouchervision.LLM_GoogleGemini import GoogleGeminiHandler
from vouchervision.LLM_MistralAI import MistralHandler
from vouchervision.LLM_local_cpu_MistralAI import LocalCPUMistralHandler
from vouchervision.LLM_local_MistralAI import LocalMistralHandler
from vouchervision.LLM_local_custom_fine_tune import LocalFineTuneHandler
from vouchervision.prompt_catalog import PromptCatalog
from vouchervision.model_maps import ModelMaps
from vouchervision.general_utils import get_cfg_from_full_path
from vouchervision.OCR_google_cloud_vision import OCREngine
'''
* For the prefix_removal, the image names have 'MICH-V-' prior to the barcode, so that is used for matching
but removed for output.
* There is also code active to replace the LLM-predicted "Catalog Number" with the correct number since it is known.
The LLMs to usually assign the barcode to the correct field, but it's not needed since it is already known.
- Look for ####################### Catalog Number pre-defined
'''
class VoucherVision():
def __init__(self, cfg, logger, dir_home, path_custom_prompts, Project, Dirs, is_hf, config_vals_for_permutation=None):
self.cfg = cfg
self.logger = logger
self.dir_home = dir_home
self.path_custom_prompts = path_custom_prompts
self.Project = Project
self.Dirs = Dirs
self.headers = None
self.prompt_version = None
self.is_hf = is_hf
self.OCR_cost = 0.0
self.OCR_tokens_in = 0
self.OCR_tokens_out = 0
### config_vals_for_permutation allows you to set the starting temp, top_k, top_p, seed....
self.config_vals_for_permutation = config_vals_for_permutation
# self.trOCR_model_version = "microsoft/trocr-large-handwritten"
# self.trOCR_model_version = "microsoft/trocr-base-handwritten"
# self.trOCR_model_version = "dh-unibe/trocr-medieval-escriptmask" # NOPE
# self.trOCR_model_version = "dh-unibe/trocr-kurrent" # NOPE
# self.trOCR_model_version = "DunnBC22/trocr-base-handwritten-OCR-handwriting_recognition_v2" # NOPE
self.trOCR_processor = None
self.trOCR_model = None
self.set_API_keys()
self.setup()
def setup(self):
self.logger.name = f'[Transcription]'
self.logger.info(f'Setting up OCR and LLM')
self.trOCR_model_version = self.cfg['leafmachine']['project']['trOCR_model_path']
self.db_name = self.cfg['leafmachine']['project']['embeddings_database_name']
self.path_domain_knowledge = self.cfg['leafmachine']['project']['path_to_domain_knowledge_xlsx']
self.build_new_db = self.cfg['leafmachine']['project']['build_new_embeddings_database']
self.continue_run_from_partial_xlsx = self.cfg['leafmachine']['project']['continue_run_from_partial_xlsx']
self.prefix_removal = self.cfg['leafmachine']['project']['prefix_removal']
self.suffix_removal = self.cfg['leafmachine']['project']['suffix_removal']
self.catalog_numerical_only = self.cfg['leafmachine']['project']['catalog_numerical_only']
self.prompt_version0 = self.cfg['leafmachine']['project']['prompt_version']
self.use_domain_knowledge = self.cfg['leafmachine']['project']['use_domain_knowledge']
self.catalog_name_options = ["Catalog Number", "catalog_number", "catalogNumber"]
self.geo_headers = ["GEO_override_OCR", "GEO_method", "GEO_formatted_full_string", "GEO_decimal_lat",
"GEO_decimal_long","GEO_city", "GEO_county", "GEO_state",
"GEO_state_code", "GEO_country", "GEO_country_code", "GEO_continent",]
self.usage_headers = ["current_time", "inference_time_s", "tool_time_s","max_cpu", "max_ram_gb", "n_gpus", "max_gpu_load", "max_gpu_vram_gb","total_gpu_vram_gb","capability_score",]
self.wfo_headers = ["WFO_override_OCR", "WFO_exact_match","WFO_exact_match_name","WFO_best_match","WFO_candidate_names","WFO_placement"]
self.wfo_headers_no_lists = ["WFO_override_OCR", "WFO_exact_match","WFO_exact_match_name","WFO_best_match","WFO_placement"]
self.utility_headers = ["filename"] + self.wfo_headers + self.geo_headers + self.usage_headers + ["run_name", "prompt", "LLM", "tokens_in", "tokens_out", "LM2_collage", "OCR_method", "OCR_double", "OCR_trOCR", "path_to_crop","path_to_original","path_to_content","path_to_helper",]
# "WFO_override_OCR", "WFO_exact_match","WFO_exact_match_name","WFO_best_match","WFO_candidate_names","WFO_placement",
# "GEO_override_OCR", "GEO_method", "GEO_formatted_full_string", "GEO_decimal_lat",
# "GEO_decimal_long","GEO_city", "GEO_county", "GEO_state",
# "GEO_state_code", "GEO_country", "GEO_country_code", "GEO_continent",
# "tokens_in", "tokens_out", "path_to_crop","path_to_original","path_to_content","path_to_helper",]
# WFO_candidate_names is separate, bc it may be type --> list
self.do_create_OCR_helper_image = self.cfg['leafmachine']['do_create_OCR_helper_image']
self.map_prompt_versions()
self.map_dir_labels()
self.map_API_options()
# self.init_embeddings()
self.init_transcription_xlsx()
self.init_trOCR_model()
'''Logging'''
self.logger.info(f'Transcribing dataset --- {self.dir_labels}')
self.logger.info(f'Saving transcription batch to --- {self.path_transcription}')
self.logger.info(f'Saving individual transcription files to --- {self.Dirs.transcription_ind}')
self.logger.info(f'Starting transcription...')
self.logger.info(f' LLM MODEL --> {self.version_name}')
self.logger.info(f' Using Azure API --> {self.is_azure}')
self.logger.info(f' Model name passed to API --> {self.model_name}')
self.logger.info(f' API access token is found in PRIVATE_DATA.yaml --> {self.has_key}')
def init_trOCR_model(self):
lgr = logging.getLogger('transformers')
lgr.setLevel(logging.ERROR)
self.trOCR_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") # usually just the "microsoft/trocr-base-handwritten"
self.trOCR_model = VisionEncoderDecoderModel.from_pretrained(self.trOCR_model_version) # This matches the model
# Check for GPU availability
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.trOCR_model.to(self.device)
def map_API_options(self):
self.chat_version = self.cfg['leafmachine']['LLM_version']
# Get the required values from ModelMaps
self.model_name = ModelMaps.get_version_mapping_cost(self.chat_version)
self.is_azure = ModelMaps.get_version_mapping_is_azure(self.chat_version)
self.has_key = ModelMaps.get_version_has_key(self.chat_version, self.has_key_openai, self.has_key_azure_openai, self.has_key_google_application_credentials, self.has_key_mistral)
# Check if the version is supported
if self.model_name is None:
supported_LLMs = ", ".join(ModelMaps.get_models_gui_list())
raise Exception(f"Unsupported LLM: {self.chat_version}. Requires one of: {supported_LLMs}")
self.version_name = self.chat_version
def map_prompt_versions(self):
self.prompt_version_map = {
"Version 1": "prompt_v1_verbose",
}
self.prompt_version = self.prompt_version_map.get(self.prompt_version0, self.path_custom_prompts)
self.is_predefined_prompt = self.is_in_prompt_version_map(self.prompt_version)
def is_in_prompt_version_map(self, value):
return value in self.prompt_version_map.values()
def map_dir_labels(self):
if self.cfg['leafmachine']['use_RGB_label_images'] in [1,2]:
self.dir_labels = os.path.join(self.Dirs.save_per_annotation_class,'label')
else:
self.dir_labels = self.Dirs.save_original
# Use glob to get all image paths in the directory
self.img_paths = glob.glob(os.path.join(self.dir_labels, "*"))
def load_rules_config(self):
with open(self.path_custom_prompts, 'r') as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
print(exc)
return None
def generate_xlsx_headers(self):
# Extract headers from the 'Dictionary' keys in the JSON template rules
# xlsx_headers = list(self.rules_config_json['rules']["Dictionary"].keys())
xlsx_headers = list(self.rules_config_json['rules'].keys())
xlsx_headers = xlsx_headers + self.utility_headers
return xlsx_headers
def init_transcription_xlsx(self):
# Initialize output file
self.path_transcription = os.path.join(self.Dirs.transcription,"transcribed.xlsx")
# else:
if not self.is_predefined_prompt:
# Load the rules configuration
self.rules_config_json = self.load_rules_config()
# Generate the headers from the configuration
self.headers = self.generate_xlsx_headers()
# Set the headers used to the dynamically generated headers
self.headers_used = 'CUSTOM'
else:
# If it's a predefined prompt, raise an exception as we don't have further instructions
raise ValueError("Predefined prompt is not handled in this context.")
self.create_or_load_excel_with_headers(os.path.join(self.Dirs.transcription,"transcribed.xlsx"), self.headers)
def create_or_load_excel_with_headers(self, file_path, headers, show_head=False):
output_dir_names = ['Archival_Components', 'Config_File', 'Cropped_Images', 'Logs', 'Original_Images', 'Transcription']
self.completed_specimens = []
# Check if the file exists and it's not None
if self.continue_run_from_partial_xlsx is not None and os.path.isfile(self.continue_run_from_partial_xlsx):
workbook = load_workbook(filename=self.continue_run_from_partial_xlsx)
sheet = workbook.active
show_head=True
# Identify the 'path_to_crop' column
try:
path_to_crop_col = headers.index('path_to_crop') + 1
path_to_original_col = headers.index('path_to_original') + 1
path_to_content_col = headers.index('path_to_content') + 1
path_to_helper_col = headers.index('path_to_helper') + 1
# self.completed_specimens = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
except ValueError:
print("'path_to_crop' not found in the header row.")
path_to_crop = list(sheet.iter_cols(min_col=path_to_crop_col, max_col=path_to_crop_col, values_only=True, min_row=2))
path_to_original = list(sheet.iter_cols(min_col=path_to_original_col, max_col=path_to_original_col, values_only=True, min_row=2))
path_to_content = list(sheet.iter_cols(min_col=path_to_content_col, max_col=path_to_content_col, values_only=True, min_row=2))
path_to_helper = list(sheet.iter_cols(min_col=path_to_helper_col, max_col=path_to_helper_col, values_only=True, min_row=2))
others = [path_to_crop_col, path_to_original_col, path_to_content_col, path_to_helper_col]
jsons = [path_to_content_col, path_to_helper_col]
for cell in path_to_crop[0]:
old_path = cell
new_path = file_path
for dir_name in output_dir_names:
if dir_name in old_path:
old_path_parts = old_path.split(dir_name)
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
self.completed_specimens.append(os.path.basename(updated_path))
print(f"{len(self.completed_specimens)} images are already completed")
### Copy the JSON files over
for colu in jsons:
cell = next(sheet.iter_rows(min_row=2, min_col=colu, max_col=colu))[0]
old_path = cell.value
new_path = file_path
old_path_parts = old_path.split('Transcription')
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + 'Transcription' + old_path_parts[1]
# Copy files
old_dir = os.path.dirname(old_path)
new_dir = os.path.dirname(updated_path)
# Check if old_dir exists and it's a directory
if os.path.exists(old_dir) and os.path.isdir(old_dir):
# Check if new_dir exists. If not, create it.
if not os.path.exists(new_dir):
os.makedirs(new_dir)
# Iterate through all files in old_dir and copy each to new_dir
for filename in os.listdir(old_dir):
shutil.copy2(os.path.join(old_dir, filename), new_dir) # copy2 preserves metadata
### Update the file names
for colu in others:
for row in sheet.iter_rows(min_row=2, min_col=colu, max_col=colu):
for cell in row:
old_path = cell.value
new_path = file_path
for dir_name in output_dir_names:
if dir_name in old_path:
old_path_parts = old_path.split(dir_name)
new_path_parts = new_path.split('Transcription')
updated_path = new_path_parts[0] + dir_name + old_path_parts[1]
cell.value = updated_path
show_head=True
else:
# Create a new workbook and select the active worksheet
workbook = Workbook()
sheet = workbook.active
# Write headers in the first row
for i, header in enumerate(headers, start=1):
sheet.cell(row=1, column=i, value=header)
self.completed_specimens = []
# Save the workbook
workbook.save(file_path)
if show_head:
print("continue_run_from_partial_xlsx:")
for i, row in enumerate(sheet.iter_rows(values_only=True)):
print(row)
if i == 3: # print the first 5 rows (0-indexed)
print("\n")
break
def add_data_to_excel_from_response(self, Dirs, path_transcription, response, WFO_record, GEO_record, usage_report,
MODEL_NAME_FORMATTED, filename_without_extension, path_to_crop, path_to_content, path_to_helper, nt_in, nt_out):
wb = openpyxl.load_workbook(path_transcription)
sheet = wb.active
# find the next empty row
next_row = sheet.max_row + 1
if isinstance(response, str):
try:
response = json.loads(response)
except json.JSONDecodeError:
print(f"Failed to parse response: {response}")
return
# iterate over headers in the first row
for i, header in enumerate(sheet[1], start=1):
# check if header value is in response keys
if (header.value in response) and (header.value not in self.catalog_name_options): ####################### Catalog Number pre-defined
# check if the response value is a dictionary
if isinstance(response[header.value], dict):
# if it is a dictionary, extract the 'value' field
cell_value = response[header.value].get('value', '')
else:
# if it's not a dictionary, use it directly
cell_value = response[header.value]
try:
# write the value to the cell
sheet.cell(row=next_row, column=i, value=cell_value)
except:
sheet.cell(row=next_row, column=i, value=cell_value[0])
elif header.value in self.catalog_name_options:
# if self.prefix_removal:
# filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
# if self.suffix_removal:
# filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
# if self.catalog_numerical_only:
# filename_without_extension = self.remove_non_numbers(filename_without_extension)
sheet.cell(row=next_row, column=i, value=filename_without_extension)
elif header.value == "path_to_crop":
sheet.cell(row=next_row, column=i, value=path_to_crop)
elif header.value == "path_to_original":
if self.cfg['leafmachine']['use_RGB_label_images'] in [1,2]:
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
path_to_original = os.path.join(base, 'Original_Images', fname)
sheet.cell(row=next_row, column=i, value=path_to_original)
else:
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(path_to_crop))
path_to_original = os.path.join(base, 'Original_Images', fname)
sheet.cell(row=next_row, column=i, value=path_to_original)
elif header.value == "path_to_content":
sheet.cell(row=next_row, column=i, value=path_to_content)
elif header.value == "path_to_helper":
sheet.cell(row=next_row, column=i, value=path_to_helper)
elif header.value == "tokens_in":
sheet.cell(row=next_row, column=i, value=nt_in)
elif header.value == "tokens_out":
sheet.cell(row=next_row, column=i, value=nt_out)
elif header.value == "filename":
sheet.cell(row=next_row, column=i, value=filename_without_extension)
elif header.value == "prompt":
sheet.cell(row=next_row, column=i, value=os.path.basename(self.path_custom_prompts))
elif header.value == "run_name":
sheet.cell(row=next_row, column=i, value=Dirs.run_name)
elif header.value == "LM2_collage":
sheet.cell(row=next_row, column=i, value=self.cfg['leafmachine']['use_RGB_label_images'])
elif header.value == "OCR_method":
value_to_insert = self.cfg['leafmachine']['project']['OCR_option']
if isinstance(value_to_insert, list):
value_to_insert = '|'.join(map(str, value_to_insert))
sheet.cell(row=next_row, column=i, value=value_to_insert)
elif header.value == "OCR_double":
sheet.cell(row=next_row, column=i, value=self.cfg['leafmachine']['project']['double_OCR'])
elif header.value == "OCR_trOCR":
sheet.cell(row=next_row, column=i, value=self.cfg['leafmachine']['project']['do_use_trOCR'])
# "WFO_exact_match","WFO_exact_match_name","WFO_best_match","WFO_candidate_names","WFO_placement"
elif header.value in self.wfo_headers_no_lists:
sheet.cell(row=next_row, column=i, value=WFO_record.get(header.value, ''))
# elif header.value == "WFO_exact_match":
# sheet.cell(row=next_row, column=i, value= WFO_record.get("WFO_exact_match",''))
# elif header.value == "WFO_exact_match_name":
# sheet.cell(row=next_row, column=i, value= WFO_record.get("WFO_exact_match_name",''))
# elif header.value == "WFO_best_match":
# sheet.cell(row=next_row, column=i, value= WFO_record.get("WFO_best_match",''))
# elif header.value == "WFO_placement":
# sheet.cell(row=next_row, column=i, value= WFO_record.get("WFO_placement",''))
elif header.value == "WFO_candidate_names":
candidate_names = WFO_record.get("WFO_candidate_names", '')
# Check if candidate_names is a list and convert to a string if it is
if isinstance(candidate_names, list):
candidate_names_str = '|'.join(candidate_names)
else:
candidate_names_str = candidate_names
sheet.cell(row=next_row, column=i, value=candidate_names_str)
# "GEO_method", "GEO_formatted_full_string", "GEO_decimal_lat", "GEO_decimal_long",
# "GEO_city", "GEO_county", "GEO_state", "GEO_state_code", "GEO_country", "GEO_country_code", "GEO_continent"
elif header.value in self.geo_headers:
sheet.cell(row=next_row, column=i, value=GEO_record.get(header.value, ''))
elif header.value in self.usage_headers:
sheet.cell(row=next_row, column=i, value=usage_report.get(header.value, ''))
elif header.value == "LLM":
sheet.cell(row=next_row, column=i, value=MODEL_NAME_FORMATTED)
# save the workbook
wb.save(path_transcription)
def has_API_key(self, val):
return isinstance(val, str) and bool(val.strip())
# if val != '':
# return True
# else:
# return False
def get_google_credentials(self): # Also used for google drive
if self.is_hf:
creds_json_str = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
return credentials
else:
with open(self.cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS'], 'r') as file:
data = json.load(file)
creds_json_str = json.dumps(data)
credentials = service_account.Credentials.from_service_account_info(json.loads(creds_json_str))
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = creds_json_str
return credentials
def set_API_keys(self):
if self.is_hf:
self.dir_home = os.path.dirname(os.path.dirname(__file__))
self.path_cfg_private = None
self.cfg_private = None
k_openai = os.getenv('OPENAI_API_KEY')
k_openai_azure = os.getenv('AZURE_API_VERSION')
k_huggingface = None
k_google_project_id = os.getenv('GOOGLE_PROJECT_ID')
k_google_location = os.getenv('GOOGLE_LOCATION')
k_google_application_credentials = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
k_mistral = os.getenv('MISTRAL_API_KEY')
k_here = os.getenv('HERE_API_KEY')
k_opencage = os.getenv('open_cage_geocode')
else:
self.dir_home = os.path.dirname(os.path.dirname(__file__))
self.path_cfg_private = os.path.join(self.dir_home, 'PRIVATE_DATA.yaml')
self.cfg_private = get_cfg_from_full_path(self.path_cfg_private)
k_openai = self.cfg_private['openai']['OPENAI_API_KEY']
k_openai_azure = self.cfg_private['openai_azure']['OPENAI_API_KEY_AZURE']
k_huggingface = self.cfg_private['huggingface']['hf_token']
os.environ["HUGGING_FACE_KEY"] = k_huggingface
k_google_project_id = self.cfg_private['google']['GOOGLE_PROJECT_ID']
k_google_location = self.cfg_private['google']['GOOGLE_LOCATION']
k_google_application_credentials = self.cfg_private['google']['GOOGLE_APPLICATION_CREDENTIALS']
k_mistral = self.cfg_private['mistral']['MISTRAL_API_KEY']
k_here = self.cfg_private['here']['API_KEY']
k_opencage = self.cfg_private['open_cage_geocode']['API_KEY']
self.has_key_openai = self.has_API_key(k_openai)
self.has_key_azure_openai = self.has_API_key(k_openai_azure)
self.llm = None
self.has_key_huggingface = self.has_API_key(k_huggingface)
self.has_key_google_project_id = self.has_API_key(k_google_project_id)
self.has_key_google_location = self.has_API_key(k_google_location)
self.has_key_google_application_credentials = self.has_API_key(k_google_application_credentials)
self.has_key_mistral = self.has_API_key(k_mistral)
self.has_key_here = self.has_API_key(k_here)
self.has_key_open_cage_geocode = self.has_API_key(k_opencage)
### Google - OCR, Palm2, Gemini
if self.has_key_google_application_credentials and self.has_key_google_project_id and self.has_key_google_location:
if self.is_hf:
vertexai.init(project=os.getenv('GOOGLE_PROJECT_ID'), location=os.getenv('GOOGLE_LOCATION'), credentials=self.get_google_credentials())
else:
vertexai.init(project=k_google_project_id, location=k_google_location, credentials=self.get_google_credentials())
os.environ['GOOGLE_API_KEY'] = self.cfg_private['google']['GOOGLE_PALM_API']
### OpenAI
if self.has_key_openai:
if self.is_hf:
openai.api_key = os.getenv('OPENAI_API_KEY')
else:
openai.api_key = self.cfg_private['openai']['OPENAI_API_KEY']
os.environ["OPENAI_API_KEY"] = self.cfg_private['openai']['OPENAI_API_KEY']
if self.has_key_huggingface:
if self.is_hf:
pass
else:
os.environ["HUGGING_FACE_KEY"] = self.cfg_private['huggingface']['hf_token']
### OpenAI - Azure
if self.has_key_azure_openai:
if self.is_hf:
# Initialize the Azure OpenAI client
self.llm = AzureChatOpenAI(
deployment_name = 'gpt-35-turbo',#'gpt-35-turbo',
openai_api_version = os.getenv('AZURE_API_VERSION'),
openai_api_key = os.getenv('AZURE_API_KEY'),
azure_endpoint = os.getenv('AZURE_API_BASE'),
openai_organization = os.getenv('AZURE_ORGANIZATION'),
)
else:
# Initialize the Azure OpenAI client
self.llm = AzureChatOpenAI(
deployment_name = 'gpt-35-turbo',#'gpt-35-turbo',
openai_api_version = self.cfg_private['openai_azure']['OPENAI_API_VERSION'],
openai_api_key = self.cfg_private['openai_azure']['OPENAI_API_KEY_AZURE'],
azure_endpoint = self.cfg_private['openai_azure']['OPENAI_API_BASE'],
openai_organization = self.cfg_private['openai_azure']['OPENAI_ORGANIZATION'],
)
### Mistral
if self.has_key_mistral:
if self.is_hf:
pass # Already set
else:
os.environ['MISTRAL_API_KEY'] = self.cfg_private['mistral']['MISTRAL_API_KEY']
### HERE
if self.has_key_here:
if self.is_hf:
pass # Already set
else:
os.environ['HERE_APP_ID'] = self.cfg_private['here']['APP_ID']
os.environ['HERE_API_KEY'] = self.cfg_private['here']['API_KEY']
### HERE
if self.has_key_open_cage_geocode:
if self.is_hf:
pass # Already set
else:
os.environ['OPENCAGE_API_KEY'] = self.cfg_private['open_cage_geocode']['API_KEY']
def clean_catalog_number(self, data, filename_without_extension):
#Cleans up the catalog number in data if it's a dict
def modify_catalog_key(catalog_key, filename_without_extension, data):
# Helper function to apply modifications on catalog number
if catalog_key not in data:
new_data = {catalog_key: None}
data = {**new_data, **data}
if self.prefix_removal:
filename_without_extension = filename_without_extension.replace(self.prefix_removal, "")
if self.suffix_removal:
filename_without_extension = filename_without_extension.replace(self.suffix_removal, "")
if self.catalog_numerical_only:
filename_without_extension = self.remove_non_numbers(data[catalog_key])
data[catalog_key] = filename_without_extension
return data
if isinstance(data, dict):
if self.headers_used == 'HEADERS_v1_n22':
return modify_catalog_key("Catalog Number", filename_without_extension, data)
elif self.headers_used in ['HEADERS_v2_n26', 'CUSTOM']:
return modify_catalog_key("filename", filename_without_extension, data)
else:
raise ValueError("Invalid headers used.")
else:
raise TypeError("Data is not of type dict.")
def write_json_to_file(self, filepath, data):
'''Writes dictionary data to a JSON file.'''
with open(filepath, 'w') as txt_file:
if isinstance(data, dict):
data = json.dumps(data, indent=4, sort_keys=False)
txt_file.write(data)
# def create_null_json(self):
# return {}
def remove_non_numbers(self, s):
return ''.join([char for char in s if char.isdigit()])
def create_null_row(self, filename_without_extension, path_to_crop, path_to_content, path_to_helper):
json_dict = {header: '' for header in self.headers}
for header, value in json_dict.items():
if header == "path_to_crop":
json_dict[header] = path_to_crop
elif header == "path_to_original":
fname = os.path.basename(path_to_crop)
base = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(path_to_crop))))
path_to_original = os.path.join(base, 'Original_Images', fname)
json_dict[header] = path_to_original
elif header == "path_to_content":
json_dict[header] = path_to_content
elif header == "path_to_helper":
json_dict[header] = path_to_helper
elif header == "filename":
json_dict[header] = filename_without_extension
# "WFO_exact_match","WFO_exact_match_name","WFO_best_match","WFO_candidate_names","WFO_placement"
elif header == "WFO_exact_match":
json_dict[header] =''
elif header == "WFO_exact_match_name":
json_dict[header] = ''
elif header == "WFO_best_match":
json_dict[header] = ''
elif header == "WFO_candidate_names":
json_dict[header] = ''
elif header == "WFO_placement":
json_dict[header] = ''
return json_dict
##################################################################################################################################
################################################## OCR ##################################################################
##################################################################################################################################
def perform_OCR_and_save_results(self, image_index, json_report, jpg_file_path_OCR_helper, txt_file_path_OCR, txt_file_path_OCR_bounds):
self.logger.info(f'Working on {image_index + 1}/{len(self.img_paths)} --- Starting OCR')
# self.OCR - None
self.OCR_cost = 0.0
self.OCR_tokens_in = 0
self.OCR_tokens_out = 0
### Process_image() runs the OCR for text, handwriting, trOCR AND creates the overlay image
ocr_google = OCREngine(self.logger, json_report, self.dir_home, self.is_hf, self.path_to_crop, self.cfg, self.trOCR_model_version, self.trOCR_model, self.trOCR_processor, self.device)
ocr_google.process_image(self.do_create_OCR_helper_image, self.logger)
self.OCR = ocr_google.OCR
self.OCR_cost = ocr_google.cost
self.OCR_tokens_in = ocr_google.tokens_in
self.OCR_tokens_out = ocr_google.tokens_out
self.logger.info(f"Complete OCR text for LLM prompt:\n\n{self.OCR}\n\n")
self.write_json_to_file(txt_file_path_OCR, ocr_google.OCR_JSON_to_file)
self.logger.info(f'Working on {image_index + 1}/{len(self.img_paths)} --- Finished OCR')
if len(self.OCR) > 0:
ocr_google.overlay_image.save(jpg_file_path_OCR_helper)
OCR_bounds = {}
if ocr_google.hand_text_to_box_mapping is not None:
OCR_bounds['OCR_bounds_handwritten'] = ocr_google.hand_text_to_box_mapping
if ocr_google.normal_text_to_box_mapping is not None:
OCR_bounds['OCR_bounds_printed'] = ocr_google.normal_text_to_box_mapping
if ocr_google.trOCR_text_to_box_mapping is not None:
OCR_bounds['OCR_bounds_trOCR'] = ocr_google.trOCR_text_to_box_mapping
self.write_json_to_file(txt_file_path_OCR_bounds, OCR_bounds)
self.logger.info(f'Working on {image_index + 1}/{len(self.img_paths)} --- Saved OCR Overlay Image')
else:
pass ########################################################################################################################### fix logic for no OCR
##################################################################################################################################
####################################################### LLM Switchboard ########################################################
##################################################################################################################################
def send_to_LLM(self, is_azure, progress_report, json_report, model_name):
self.n_failed_LLM_calls = 0
self.n_failed_OCR = 0
final_JSON_response = None
final_WFO_record = None
final_GEO_record = None
self.initialize_token_counters()
self.update_progress_report_initial(progress_report)
MODEL_NAME_FORMATTED = ModelMaps.get_API_name(model_name)
name_parts = model_name.split("_")
self.setup_JSON_dict_structure()
Copy_Prompt = PromptCatalog()
Copy_Prompt.copy_prompt_template_to_new_dir(self.Dirs.transcription_prompt, self.path_custom_prompts)
if json_report:
json_report.set_text(text_main=f'Loading {MODEL_NAME_FORMATTED}')
json_report.set_JSON({}, {}, {})
llm_model = self.initialize_llm_model(self.cfg, self.logger, MODEL_NAME_FORMATTED, self.JSON_dict_structure, name_parts, is_azure, self.llm, self.config_vals_for_permutation)
for i, path_to_crop in enumerate(self.img_paths):
self.update_progress_report_batch(progress_report, i)
if self.should_skip_specimen(path_to_crop):
self.log_skipping_specimen(path_to_crop)
continue
paths = self.generate_paths(path_to_crop, i)
self.path_to_crop = path_to_crop
filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper, json_file_path_wiki, txt_file_path_ind_prompt = paths
if json_report:
json_report.set_text(text_main='Starting OCR')
self.perform_OCR_and_save_results(i, json_report, jpg_file_path_OCR_helper, txt_file_path_OCR, txt_file_path_OCR_bounds)
if json_report:
json_report.set_text(text_main='Finished OCR')
if not self.OCR:
self.n_failed_OCR += 1
response_candidate = None
nt_in = 0
nt_out = 0
else:
### Format prompt
prompt = self.setup_prompt()
# prompt = remove_colons_and_double_apostrophes(prompt) # This is moved to utils_VV since it broke the json structure.
### Send prompt to chosen LLM
self.logger.info(f'Waiting for {model_name} API call --- Using {MODEL_NAME_FORMATTED}')
if 'PALM2' in name_parts:
response_candidate, nt_in, nt_out, WFO_record, GEO_record, usage_report = llm_model.call_llm_api_GooglePalm2(prompt, json_report, paths)
elif 'GEMINI' in name_parts:
response_candidate, nt_in, nt_out, WFO_record, GEO_record, usage_report = llm_model.call_llm_api_GoogleGemini(prompt, json_report, paths)
elif 'MISTRAL' in name_parts and ('LOCAL' not in name_parts):
response_candidate, nt_in, nt_out, WFO_record, GEO_record, usage_report = llm_model.call_llm_api_MistralAI(prompt, json_report, paths)
elif 'LOCAL' in name_parts:
if 'MISTRAL' in name_parts or 'MIXTRAL' in name_parts:
if 'CPU' in name_parts:
response_candidate, nt_in, nt_out, WFO_record, GEO_record, usage_report = llm_model.call_llm_local_cpu_MistralAI(prompt, json_report, paths)
else:
response_candidate, nt_in, nt_out, WFO_record, GEO_record, usage_report = llm_model.call_llm_local_MistralAI(prompt, json_report, paths)
elif "/" in ''.join(name_parts):
response_candidate, nt_in, nt_out, WFO_record, GEO_record, usage_report = llm_model.call_llm_local_custom_fine_tune(self.OCR, json_report, paths) ###
else:
response_candidate, nt_in, nt_out, WFO_record, GEO_record, usage_report = llm_model.call_llm_api_OpenAI(prompt, json_report, paths)
self.n_failed_LLM_calls += 1 if response_candidate is None else 0
### Estimate n tokens returned
self.logger.info(f'Prompt tokens IN --- {nt_in}')
self.logger.info(f'Prompt tokens OUT --- {nt_out}')
self.update_token_counters(nt_in, nt_out)
final_JSON_response, final_WFO_record, final_GEO_record = self.update_final_response(response_candidate, WFO_record, GEO_record, usage_report, MODEL_NAME_FORMATTED, paths, path_to_crop, nt_in, nt_out)
self.logger.info(f'Finished LLM call')
if json_report:
json_report.set_JSON(final_JSON_response, final_WFO_record, final_GEO_record)
self.update_progress_report_final(progress_report)
final_JSON_response = self.parse_final_json_response(final_JSON_response)
return final_JSON_response, final_WFO_record, final_GEO_record, self.total_tokens_in, self.total_tokens_out, self.OCR_cost, self.OCR_tokens_in, self.OCR_tokens_out
##################################################################################################################################
################################################## LLM Helper Funcs ##############################################################
##################################################################################################################################
def initialize_llm_model(self, cfg, logger, model_name, JSON_dict_structure, name_parts, is_azure=None, llm_object=None, config_vals_for_permutation=None):
if 'LOCAL'in name_parts:
if ('MIXTRAL' in name_parts) or ('MISTRAL' in name_parts):
if 'CPU' in name_parts:
return LocalCPUMistralHandler(cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation)
else:
return LocalMistralHandler(cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation)
elif "/" in ''.join(name_parts):
return LocalFineTuneHandler(cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation)
else:
if 'PALM2' in name_parts:
return GooglePalm2Handler(cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation)
elif 'GEMINI' in name_parts:
return GoogleGeminiHandler(cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation)
elif 'MISTRAL' in name_parts and ('LOCAL' not in name_parts):
return MistralHandler(cfg, logger, model_name, JSON_dict_structure, config_vals_for_permutation)
else:
return OpenAIHandler(cfg, logger, model_name, JSON_dict_structure, is_azure, llm_object, config_vals_for_permutation)
def setup_prompt(self):
Catalog = PromptCatalog()
prompt, _ = Catalog.prompt_SLTP(self.path_custom_prompts, OCR=self.OCR)
return prompt
def setup_JSON_dict_structure(self):
Catalog = PromptCatalog()
_, self.JSON_dict_structure = Catalog.prompt_SLTP(self.path_custom_prompts, OCR='Text')
def initialize_token_counters(self):
self.total_tokens_in = 0
self.total_tokens_out = 0
def update_progress_report_initial(self, progress_report):
if progress_report is not None:
progress_report.set_n_batches(len(self.img_paths))
def update_progress_report_batch(self, progress_report, batch_index):
if progress_report is not None:
progress_report.update_batch(f"Working on image {batch_index + 1} of {len(self.img_paths)}")
def should_skip_specimen(self, path_to_crop):
return os.path.basename(path_to_crop) in self.completed_specimens
def log_skipping_specimen(self, path_to_crop):
self.logger.info(f'[Skipping] specimen {os.path.basename(path_to_crop)} already processed')
def update_token_counters(self, nt_in, nt_out):
self.total_tokens_in += nt_in
self.total_tokens_out += nt_out
def update_final_response(self, response_candidate, WFO_record, GEO_record, usage_report, MODEL_NAME_FORMATTED, paths, path_to_crop, nt_in, nt_out):
filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper, json_file_path_wiki, txt_file_path_ind_prompt = paths
# Saving the JSON and XLSX files with the response and updating the final JSON response
if response_candidate is not None:
final_JSON_response_updated = self.save_json_and_xlsx(self.Dirs, response_candidate, WFO_record, GEO_record, usage_report, MODEL_NAME_FORMATTED, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
return final_JSON_response_updated, WFO_record, GEO_record
else:
final_JSON_response_updated = self.save_json_and_xlsx(self.Dirs, response_candidate, WFO_record, GEO_record, usage_report, MODEL_NAME_FORMATTED, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
return final_JSON_response_updated, WFO_record, GEO_record
def update_progress_report_final(self, progress_report):
if progress_report is not None:
progress_report.reset_batch("Batch Complete")
def parse_final_json_response(self, final_JSON_response):
try:
return json.loads(final_JSON_response.strip('```').replace('json\n', '', 1).replace('json', '', 1))
except:
return final_JSON_response
def generate_paths(self, path_to_crop, i):
filename_without_extension = os.path.splitext(os.path.basename(path_to_crop))[0]
txt_file_path = os.path.join(self.Dirs.transcription_ind, filename_without_extension + '.json')
txt_file_path_OCR = os.path.join(self.Dirs.transcription_ind_OCR, filename_without_extension + '.json')
txt_file_path_OCR_bounds = os.path.join(self.Dirs.transcription_ind_OCR_bounds, filename_without_extension + '.json')
jpg_file_path_OCR_helper = os.path.join(self.Dirs.transcription_ind_OCR_helper, filename_without_extension + '.jpg')
json_file_path_wiki = os.path.join(self.Dirs.transcription_ind_wiki, filename_without_extension + '.json')
txt_file_path_ind_prompt = os.path.join(self.Dirs.transcription_ind_prompt, filename_without_extension + '.txt')
self.logger.info(f'Working on {i+1}/{len(self.img_paths)} --- {filename_without_extension}')
return filename_without_extension, txt_file_path, txt_file_path_OCR, txt_file_path_OCR_bounds, jpg_file_path_OCR_helper, json_file_path_wiki, txt_file_path_ind_prompt
def save_json_and_xlsx(self, Dirs, response, WFO_record, GEO_record, usage_report,
MODEL_NAME_FORMATTED, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out):
if response is None:
response = self.JSON_dict_structure
# Insert 'filename' as the first key
response = {'filename': filename_without_extension, **{k: v for k, v in response.items() if k != 'filename'}}
self.write_json_to_file(txt_file_path, response)
# Then add the null info to the spreadsheet
response_null = self.create_null_row(filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper)
self.add_data_to_excel_from_response(Dirs, self.path_transcription, response_null, WFO_record, GEO_record, usage_report, MODEL_NAME_FORMATTED, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in=0, nt_out=0)
### Set completed JSON
else:
response = self.clean_catalog_number(response, filename_without_extension)
self.write_json_to_file(txt_file_path, response)
# add to the xlsx file
self.add_data_to_excel_from_response(Dirs, self.path_transcription, response, WFO_record, GEO_record, usage_report, MODEL_NAME_FORMATTED, filename_without_extension, path_to_crop, txt_file_path, jpg_file_path_OCR_helper, nt_in, nt_out)
return response
def process_specimen_batch(self, progress_report, json_report, is_real_run=False):
if not self.has_key:
self.logger.error(f'No API key found for {self.version_name}')
raise Exception(f"No API key found for {self.version_name}")
try:
if is_real_run:
progress_report.update_overall(f"Transcribing Labels")
final_json_response, final_WFO_record, final_GEO_record, total_tokens_in, total_tokens_out, OCR_cost, OCR_tokens_in, OCR_tokens_out = self.send_to_LLM(self.is_azure, progress_report, json_report, self.model_name)
return final_json_response, final_WFO_record, final_GEO_record, total_tokens_in, total_tokens_out, OCR_cost, OCR_tokens_in, OCR_tokens_out
except Exception as e:
self.logger.error(f"LLM call failed in process_specimen_batch: {e}")
if progress_report is not None:
progress_report.reset_batch(f"Batch Failed")
self.close_logger_handlers()
raise
def close_logger_handlers(self):
for handler in self.logger.handlers[:]:
handler.close()
self.logger.removeHandler(handler)
# def process_specimen_batch_OCR_test(self, path_to_crop):
# for img_filename in os.listdir(path_to_crop):
# img_path = os.path.join(path_to_crop, img_filename)
# self.OCR, self.bounds, self.text_to_box_mapping = detect_text(img_path)
def space_saver(cfg, Dirs, logger):
dir_out = cfg['leafmachine']['project']['dir_output']
run_name = Dirs.run_name
path_project = os.path.join(dir_out, run_name)
if cfg['leafmachine']['project']['delete_temps_keep_VVE']:
logger.name = '[DELETE TEMP FILES]'
logger.info("Deleting temporary files. Keeping files required for VoucherVisionEditor.")
delete_dirs = ['Archival_Components', 'Config_File']
for d in delete_dirs:
path_delete = os.path.join(path_project, d)
if os.path.exists(path_delete):
shutil.rmtree(path_delete)
elif cfg['leafmachine']['project']['delete_all_temps']:
logger.name = '[DELETE TEMP FILES]'
logger.info("Deleting ALL temporary files!")
delete_dirs = ['Archival_Components', 'Config_File', 'Original_Images', 'Cropped_Images']
for d in delete_dirs:
path_delete = os.path.join(path_project, d)
if os.path.exists(path_delete):
shutil.rmtree(path_delete)
# Delete the transctiption folder, but keep the xlsx
transcription_path = os.path.join(path_project, 'Transcription')
if os.path.exists(transcription_path):
for item in os.listdir(transcription_path):
item_path = os.path.join(transcription_path, item)
if os.path.isdir(item_path): # if the item is a directory
if os.path.exists(item_path):
shutil.rmtree(item_path) # delete the directory