Spaces:
Running
Running
Major update. Support for 15 LLMs, World Flora Online taxonomy validation, geolocation, 2 OCR methods, significant UI changes, stability improvements, consistent JSON parsing
e91ac58
from dataclasses import dataclass | |
from langchain_core.pydantic_v1 import Field, create_model | |
import yaml, json | |
class PromptCatalog: | |
domain_knowledge_example: str = "" | |
similarity: str = "" | |
OCR: str = "" | |
n_fields: int = 0 | |
############################################################################################# | |
############################################################################################# | |
############################################################################################# | |
############################################################################################# | |
# These are for dynamically creating your own prompts with n-columns | |
def prompt_SLTP(self, rules_config_path, OCR=None, is_palm=False): | |
self.OCR = OCR | |
self.rules_config_path = rules_config_path | |
self.rules_config = self.load_rules_config() | |
self.instructions = self.rules_config['instructions'] | |
self.json_formatting_instructions = self.rules_config['json_formatting_instructions'] | |
self.rules_list = self.rules_config['rules'] | |
self.n_fields = len(self.rules_config['rules']) | |
# Set the rules for processing OCR into JSON format | |
self.rules = self.create_rules(is_palm) | |
self.structure, self.dictionary_structure = self.create_structure(is_palm) | |
''' between instructions and json_formatting_instructions. Made the prompt too long. Better performance without it | |
The unstructured OCR text is: | |
{self.OCR} | |
''' | |
if is_palm: | |
prompt = f"""Please help me complete this text parsing task given the following rules and unstructured OCR text. Your task is to refactor the OCR text into a structured JSON dictionary that matches the structure specified in the following rules. Please follow the rules strictly. | |
The rules are: | |
{self.instructions} | |
{self.json_formatting_instructions} | |
This is the JSON template that includes instructions for each key: | |
{self.rules} | |
The unstructured OCR text is: | |
{self.OCR} | |
Please populate the following JSON dictionary based on the rules and the unformatted OCR text: | |
{self.structure} | |
{self.structure} | |
{self.structure} | |
""" | |
else: | |
prompt = f"""Please help me complete this text parsing task given the following rules and unstructured OCR text. Your task is to refactor the OCR text into a structured JSON dictionary that matches the structure specified in the following rules. Please follow the rules strictly. | |
The rules are: | |
{self.instructions} | |
{self.json_formatting_instructions} | |
This is the JSON template that includes instructions for each key: | |
{self.rules} | |
The unstructured OCR text is: | |
{self.OCR} | |
Please populate the following JSON dictionary based on the rules and the unformatted OCR text: | |
{self.structure} | |
""" | |
# xlsx_headers = self.generate_xlsx_headers(is_palm) | |
# return prompt, self.PromptJSONModel, self.n_fields, xlsx_headers | |
return prompt, self.dictionary_structure | |
def load_rules_config(self): | |
with open(self.rules_config_path, 'r') as stream: | |
try: | |
return yaml.safe_load(stream) | |
except yaml.YAMLError as exc: | |
print(exc) | |
return None | |
def create_rules(self, is_palm=False): | |
dictionary_structure = {key: value for key, value in self.rules_list.items()} | |
# Convert the structure to a JSON string without indentation | |
structure_json_str = json.dumps(dictionary_structure, sort_keys=False) | |
return structure_json_str | |
def create_structure(self, is_palm=False): | |
# Create fields for the Pydantic model dynamically | |
fields = {key: (str, Field(default=value, description=value)) for key, value in self.rules_list.items()} | |
# Dynamically create the Pydantic model | |
DynamicJSONParsingModel = create_model('SLTPvA', **fields) | |
DynamicJSONParsingModel_use = DynamicJSONParsingModel() | |
# Define the structure for the "Dictionary" section | |
dictionary_fields = {key: (str, Field(default='', description="")) for key in self.rules_list.keys()} | |
# Dynamically create the "Dictionary" Pydantic model | |
PromptJSONModel = create_model('PromptJSONModel', **dictionary_fields) | |
# Convert the model to JSON string (for demonstration) | |
dictionary_structure = PromptJSONModel().dict() | |
structure_json_str = json.dumps(dictionary_structure, sort_keys=False, indent=4) | |
return structure_json_str, dictionary_structure | |
def generate_xlsx_headers(self, is_palm): | |
# Extract headers from the 'Dictionary' keys in the JSON template rules | |
if is_palm: | |
xlsx_headers = list(self.rules_list.keys()) | |
return xlsx_headers | |
else: | |
xlsx_headers = list(self.rules_list.keys()) | |
return xlsx_headers | |