phyloforfun's picture
req
a145e37
# Helper funcs for LLM_XXXXX.py
import tiktoken, json, os, yaml
from langchain_core.output_parsers.format_instructions import JSON_FORMAT_INSTRUCTIONS
from transformers import AutoTokenizer
import GPUtil
import time
import psutil
import threading
import torch
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
try:
from vouchervision.tool_taxonomy_WFO import validate_taxonomy_WFO, WFONameMatcher
from vouchervision.tool_geolocate_HERE import validate_coordinates_here
from vouchervision.tool_wikipedia import validate_wikipedia
except:
from tool_taxonomy_WFO import validate_taxonomy_WFO, WFONameMatcher
from tool_geolocate_HERE import validate_coordinates_here
from tool_wikipedia import validate_wikipedia
def run_tools(output, tool_WFO, tool_GEO, tool_wikipedia, json_file_path_wiki):
# Define a function that will catch and return the results of your functions
def task(func, *args, **kwargs):
return func(*args, **kwargs)
# List of tasks to run in separate threads
tasks = [
(validate_taxonomy_WFO, (tool_WFO, output, False)),
(validate_coordinates_here, (tool_GEO, output, False)),
(validate_wikipedia, (tool_wikipedia, json_file_path_wiki, output)),
]
# Results storage
results = {}
# Use ThreadPoolExecutor to execute each function in its own thread
with ThreadPoolExecutor() as executor:
future_to_func = {executor.submit(task, func, *args): func.__name__ for func, args in tasks}
for future in as_completed(future_to_func):
func_name = future_to_func[future]
try:
# Collecting results
results[func_name] = future.result()
except Exception as exc:
print(f'{func_name} generated an exception: {exc}')
# Here, all threads have completed
# Extracting results
Matcher = WFONameMatcher(tool_WFO)
GEO_dict_null = {
'GEO_override_OCR': False,
'GEO_method': '',
'GEO_formatted_full_string': '',
'GEO_decimal_lat': '',
'GEO_decimal_long': '',
'GEO_city': '',
'GEO_county': '',
'GEO_state': '',
'GEO_state_code': '',
'GEO_country': '',
'GEO_country_code': '',
'GEO_continent': '',
}
output_WFO, WFO_record = results.get('validate_taxonomy_WFO', (output, Matcher.NULL_DICT))
output_GEO, GEO_record = results.get('validate_coordinates_here', (output, GEO_dict_null))
return output_WFO, WFO_record, output_GEO, GEO_record
def save_individual_prompt(prompt_template, txt_file_path_ind_prompt):
with open(txt_file_path_ind_prompt, 'w',encoding='utf-8') as file:
file.write(prompt_template)
def sanitize_prompt(data):
if isinstance(data, dict):
return {sanitize_prompt(key): sanitize_prompt(value) for key, value in data.items()}
elif isinstance(data, list):
return [sanitize_prompt(element) for element in data]
elif isinstance(data, str):
return data.encode('utf-8', 'ignore').decode('utf-8')
else:
return data
def count_tokens(string, vendor, model_name):
full_string = string + JSON_FORMAT_INSTRUCTIONS
def run_count(full_string, model_name):
# Ensure the encoding is obtained correctly.
encoding = tiktoken.encoding_for_model(model_name)
tokens = encoding.encode(full_string)
return len(tokens)
try:
if vendor == 'mistral':
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
tokens = tokenizer.tokenize(full_string)
return len(tokens)
else:
return run_count(full_string, model_name)
except Exception as e:
print(f"An error occurred: {e}")
return 0
class SystemLoadMonitor():
def __init__(self, logger) -> None:
self.monitoring_thread = None
self.logger = logger
self.gpu_usage = {'max_cpu_usage': 0, 'max_load': 0, 'max_vram_usage': 0, "max_ram_usage": 0, 'n_gpus': 0, 'monitoring': True}
self.start_time = None
self.tool_start_time = None
self.has_GPU = torch.cuda.is_available()
self.monitor_interval = 2
def start_monitoring_usage(self):
self.start_time = time.time()
self.monitoring_thread = threading.Thread(target=self.monitor_usage, args=(self.monitor_interval,))
self.monitoring_thread.start()
def stop_inference_timer(self):
# Stop inference timer and record elapsed time
self.inference_time = time.time() - self.start_time
# Immediately start the tool timer
self.tool_start_time = time.time()
def monitor_usage(self, interval):
while self.gpu_usage['monitoring']:
# GPU monitoring
if self.has_GPU:
GPUs = GPUtil.getGPUs()
self.gpu_usage['n_gpus'] = len(GPUs) # Count the number of GPUs
total_load = 0
total_memory_usage_gb = 0
for gpu in GPUs:
total_load += gpu.load
total_memory_usage_gb += gpu.memoryUsed / 1024.0
if self.gpu_usage['n_gpus'] > 0: # Avoid division by zero
# Calculate the average load and memory usage across all GPUs
self.gpu_usage['max_load'] = max(self.gpu_usage['max_load'], total_load / self.gpu_usage['n_gpus'])
self.gpu_usage['max_vram_usage'] = max(self.gpu_usage['max_vram_usage'], total_memory_usage_gb)
# RAM monitoring
ram_usage = psutil.virtual_memory().used / (1024.0 ** 3) # Get RAM usage in GB
self.gpu_usage['max_ram_usage'] = max(self.gpu_usage.get('max_ram_usage', 0), ram_usage)
# CPU monitoring
cpu_usage = psutil.cpu_percent(interval=None)
self.gpu_usage['max_cpu_usage'] = max(self.gpu_usage.get('max_cpu_usage', 0), cpu_usage)
time.sleep(interval)
def get_current_datetime(self):
# Get the current date and time
now = datetime.now()
# Format it as a string, replacing colons with underscores
datetime_iso = now.strftime('%Y_%m_%dT%H_%M_%S')
return datetime_iso
def stop_monitoring_report_usage(self):
self.gpu_usage['monitoring'] = False
self.monitoring_thread.join()
tool_time = time.time() - self.tool_start_time if self.tool_start_time else 0
num_gpus, gpu_dict, total_vram_gb, capability_score = check_system_gpus()
report = {
'inference_time_s': str(round(self.inference_time, 2)),
'tool_time_s': str(round(tool_time, 2)),
'max_cpu': str(round(self.gpu_usage['max_cpu_usage'], 2)),
'max_ram_gb': str(round(self.gpu_usage['max_ram_usage'], 2)),
'current_time': self.get_current_datetime(),
'n_gpus': self.gpu_usage['n_gpus'],
'total_gpu_vram_gb':total_vram_gb,
'capability_score':capability_score,
}
if self.logger:
self.logger.info(f"Inference Time: {round(self.inference_time,2)} seconds")
self.logger.info(f"Tool Time: {round(tool_time,2)} seconds")
self.logger.info(f"Max CPU Usage: {round(self.gpu_usage['max_cpu_usage'],2)}%")
self.logger.info(f"Max RAM Usage: {round(self.gpu_usage['max_ram_usage'],2)}GB")
else:
print(f"Inference Time: {round(self.inference_time,2)} seconds")
print(f"Tool Time: {round(tool_time,2)} seconds")
print(f"Max CPU Usage: {round(self.gpu_usage['max_cpu_usage'],2)}%")
print(f"Max RAM Usage: {round(self.gpu_usage['max_ram_usage'],2)}GB")
if self.has_GPU:
report.update({'max_gpu_load': str(round(self.gpu_usage['max_load'] * 100, 2))})
report.update({'max_gpu_vram_gb': str(round(self.gpu_usage['max_vram_usage'], 2))})
if self.logger:
self.logger.info(f"Max GPU Load: {round(self.gpu_usage['max_load'] * 100, 2)}%")
self.logger.info(f"Max GPU Memory Usage: {round(self.gpu_usage['max_vram_usage'], 2)}GB")
else:
print(f"Max GPU Load: {round(self.gpu_usage['max_load'] * 100, 2)}%")
print(f"Max GPU Memory Usage: {round(self.gpu_usage['max_vram_usage'], 2)}GB")
else:
report.update({'max_gpu_load': '0'})
report.update({'max_gpu_vram_gb': '0'})
return report
def check_system_gpus():
print(f"Torch CUDA: {torch.cuda.is_available()}")
# if not torch.cuda.is_available():
# return 0, {}, 0, "no_gpu"
GPUs = GPUtil.getGPUs()
num_gpus = len(GPUs)
gpu_dict = {}
total_vram = 0
for i, gpu in enumerate(GPUs):
gpu_vram = gpu.memoryTotal # VRAM in MB
gpu_dict[f"GPU_{i}"] = f"{gpu_vram / 1024} GB" # Convert to GB
total_vram += gpu_vram
total_vram_gb = total_vram / 1024 # Convert total VRAM to GB
capability_score_map = {
"no_gpu": 0,
"class_8GB": 10,
"class_12GB": 14,
"class_16GB": 18,
"class_24GB": 26,
"class_48GB": 50,
"class_96GB": 100,
"class_96GBplus": float('inf'), # Use infinity to represent any value greater than 96GB
}
# Determine the capability score based on the total VRAM
capability_score = "no_gpu"
for score, vram in capability_score_map.items():
if total_vram_gb <= vram:
capability_score = score
break
else:
capability_score = "class_max"
return num_gpus, gpu_dict, total_vram_gb, capability_score
if __name__ == '__main__':
num_gpus, gpu_dict, total_vram_gb, capability_score = check_system_gpus()
print(f"Number of GPUs: {num_gpus}")
print(f"GPU Details: {gpu_dict}")
print(f"Total VRAM: {total_vram_gb} GB")
print(f"Capability Score: {capability_score}")