# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # Start FROM Ubuntu image https://hub.docker.com/_/ubuntu FROM ubuntu:latest # Install linux packages RUN apt update RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt install -y tzdata RUN apt install -y python3-pip git zip curl htop screen libgl1-mesa-glx libglib2.0-0 RUN alias python=python3 # Install python dependencies COPY requirements.txt . RUN python3 -m pip install --upgrade pip RUN pip install --no-cache -r requirements.txt albumentations gsutil notebook \ coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu tensorflowjs \ torch==1.11.0+cpu torchvision==0.12.0+cpu -f https://download.pytorch.org/whl/cpu/torch_stable.html # Create working directory RUN mkdir -p /usr/src/app WORKDIR /usr/src/app # Copy contents COPY . /usr/src/app RUN git clone https://github.com/ultralytics/yolov5 /usr/src/yolov5 # Downloads to user config dir ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/ # Usage Examples ------------------------------------------------------------------------------------------------------- # Build and Push # t=ultralytics/yolov5:latest-cpu && sudo docker build -f utils/docker/Dockerfile-cpu -t $t . && sudo docker push $t # Pull and Run # t=ultralytics/yolov5:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t