File size: 9,411 Bytes
4a2c956
fab2242
7c790c0
61b9ff7
59618c7
 
 
 
 
4643bb5
99d45f7
59618c7
 
 
 
 
 
 
 
 
 
 
 
7c790c0
 
3cb35fd
 
 
42e5f71
 
3cb35fd
 
f787cc5
59618c7
3cb35fd
7c790c0
59618c7
 
3cb35fd
a00d592
7c790c0
fab2242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5833996
 
 
 
607417a
fab2242
5833996
 
 
fab2242
 
5833996
fab2242
 
 
 
5833996
fab2242
 
 
 
5833996
 
 
 
 
 
 
3cb35fd
5709a62
 
 
 
 
 
 
 
fab2242
3cb35fd
7c790c0
 
 
 
5833996
5709a62
 
 
7c790c0
5833996
fab2242
5833996
 
 
 
 
 
 
3cb35fd
ea2eccb
5709a62
 
 
 
3cb35fd
7c790c0
5709a62
7c790c0
5709a62
 
 
 
 
 
 
7c790c0
 
 
 
fab2242
 
 
 
 
 
e63ee0a
fab2242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5833996
29c4970
 
0b1be7c
5833996
 
 
 
0b1be7c
fab2242
 
7c790c0
040cd58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab2242
040cd58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb35fd
 
fab2242
 
 
 
 
 
f88c740
 
 
 
 
 
 
 
 
7c790c0
3cb35fd
e63ee0a
3cb35fd
78c7c53
3cb35fd
 
fab2242
 
 
3cb35fd
fab2242
 
3cb35fd
 
 
f88c740
3cb35fd
 
fab2242
 
7c790c0
59618c7
e63ee0a
fab2242
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import gradio as gr
import os, gc, copy, torch
from huggingface_hub import hf_hub_download
from pynvml import *

# Flag to check if GPU is present
HAS_GPU = False

# Model title and context size limit
ctx_limit = 2000
title = "RWKV-5-World-1B5-v2-Translator"
model_file = "RWKV-5-World-1B5-v2-20231025-ctx4096"

# Get the GPU count
try:
    nvmlInit()
    GPU_COUNT = nvmlDeviceGetCount()
    if GPU_COUNT > 0:
        HAS_GPU = True
        gpu_h = nvmlDeviceGetHandleByIndex(0)
except NVMLError as error:
    print(error)

os.environ["RWKV_JIT_ON"] = '1'

# Model strategy to use
MODEL_STRAT = "cpu bf16"
os.environ["RWKV_CUDA_ON"] = '0'  # if '1' then use CUDA kernel for seq mode (much faster)

# Switch to GPU mode
if HAS_GPU:
    os.environ["RWKV_CUDA_ON"] = '1'
    MODEL_STRAT = "cuda bf16"

# Load the model
from rwkv.model import RWKV
model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{model_file}.pth")
model = RWKV(model=model_path, strategy=MODEL_STRAT)
from rwkv.utils import PIPELINE
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

# State copy
def universal_deepcopy(obj):
    if hasattr(obj, 'clone'):  # Assuming it's a tensor if it has a clone method
        return obj.clone()
    elif isinstance(obj, list):
        return [universal_deepcopy(item) for item in obj]
    else:
        return copy.deepcopy(obj)

# For debgging mostly
def inspect_structure(obj, depth=0):
    indent = "  " * depth
    obj_type = type(obj).__name__
    
    if isinstance(obj, list):
        print(f"{indent}List (length {len(obj)}):")
        for item in obj:
            inspect_structure(item, depth + 1)
    elif isinstance(obj, dict):
        print(f"{indent}Dict (length {len(obj)}):")
        for key, value in obj.items():
            print(f"{indent}  Key: {key}")
            inspect_structure(value, depth + 1)
    else:
        print(f"{indent}{obj_type}")

# Precomputation of the state
def precompute_state(text):
    state = None
    text_encoded = pipeline.encode(text)
    _, state = model.forward(text_encoded, state)
    return state

# Precomputing the base instruction set
INSTRUCT_PREFIX = f'''
You are a translator bot that can translate text to any language.
And will respond only with the translated text, without additional comments.

## From English:
It is not enough to know, we must also apply; it is not enough to will, we must also do.
## To Polish:
Nie wystarczy wiedzieć, trzeba także zastosować; nie wystarczy chcieć, trzeba też działać.

## From Spanish:
La muerte no nos concierne, porque mientras existamos, la muerte no está aquí. Y cuando llega, ya no existimos.
## To English:
Death does not concern us, because as long as we exist, death is not here. And when it does come, we no longer exist.


'''

# Get the prefix state
PREFIX_STATE = precompute_state(INSTRUCT_PREFIX)

# Translation logic
def translate(
        text, source_language, target_language, 
        inState=PREFIX_STATE,
        temperature=0.2,
        top_p=0.5,
        presencePenalty = 0.1,
        countPenalty = 0.1,    
    ):
    prompt = f"## From {source_language}:\n{text}\n\n## To {target_language}:\n"
    ctx = prompt.strip()
    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}

    alpha_frequency = countPenalty
    alpha_presence = presencePenalty

    state = None
    if inState != None:
        state = universal_deepcopy(inState)
    
    # Clear GC
    gc.collect()
    if HAS_GPU == True :
        torch.cuda.empty_cache()

    # Generate things token by token
    for i in range(ctx_limit):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in occurrence:
            out[n] -= (alpha_presence + occurrence[n] * alpha_frequency)
        token = pipeline.sample_logits(out, temperature=temperature, top_p=top_p)
        
        if token in [0]:  # EOS token
            break

        all_tokens += [token]
        for xxx in occurrence:
            occurrence[xxx] *= 0.996        
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1

        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            out_last = i + 1
        else:
            return out_str.strip()

        if "\n:" in out_str :
            out_str = out_str.split("\n\nHuman:")[0].split("\nHuman:")[0]
            return out_str.strip()

        if "{source_language}:" in out_str :
            out_str = out_str.split("{source_language}:")[0]
            return out_str.strip()

        if "{target_language}:" in out_str :
            out_str = out_str.split("{target_language}:")[0]
            return out_str.strip()

        if "\nHuman:" in out_str :
            out_str = out_str.split("\n\nHuman:")[0].split("\nHuman:")[0]
            return out_str.strip()

        if "\nAssistant:" in out_str :
            out_str = out_str.split("\n\nAssistant:")[0].split("\nAssistant:")[0]
            return out_str.strip()

        if "\n#" in out_str :
            out_str = out_str.split("\n\n#")[0].split("\n#")[0]
            return out_str.strip()

        # Yield for streaming
        yield out_str.strip()

    del out
    del state

    # # Clear GC
    # gc.collect()
    # if HAS_GPU == True :
    #     torch.cuda.empty_cache()
    
    # yield out_str.strip()
    return out_str.strip()

# Languages
LANGUAGES = [
  "English",
  "Chinese",
  "Spanish",
  "Bengali",
  "Hindi", 
  "Portuguese",
  "Russian",
  "Japanese",
  "German",
  "Chinese (Wu)",
  "Javanese",
  "Korean",
  "French",
  "Vietnamese",
  "Telugu",
  "Chinese (Yue)",
  "Marathi", 
  "Tamil",
  "Turkish",
  "Urdu",
  "Chinese (Min Nan)",
  "Chinese (Jin Yu)",
  "Gujarati",
  "Polish",
  "Arabic (Egyptian Spoken)",
  "Ukrainian",
  "Italian",
  "Chinese (Xiang)",
  "Malayalam",
  "Chinese (Hakka)",
  "Kannada",
  "Oriya",
  "Panjabi (Western)",
  "Panjabi (Eastern)",
  "Sunda",
  "Romanian",
  "Bhojpuri",
  "Azerbaijani (South)",
  "Farsi (Western)",
  "Maithili",
  "Hausa",
  "Arabic (Algerian Spoken)",
  "Burmese",
  "Serbo-Croatian",
  "Chinese (Gan)",
  "Awadhi",
  "Thai",
  "Dutch", 
  "Yoruba",
  "Sindhi",
  "Arabic (Moroccan Spoken)",
  "Arabic (Saidi Spoken)",
  "Uzbek, Northern",
  "Malay",
  "Amharic",
  "Indonesian",
  "Igbo",
  "Tagalog",
  "Nepali",
  "Arabic (Sudanese Spoken)",
  "Saraiki",
  "Cebuano",
  "Arabic (North Levantine Spoken)",
  "Thai (Northeastern)",
  "Assamese",
  "Hungarian",
  "Chittagonian",
  "Arabic (Mesopotamian Spoken)",
  "Madura",
  "Sinhala",
  "Haryanvi",
  "Marwari",
  "Czech",
  "Greek",
  "Magahi",
  "Chhattisgarhi",
  "Deccan",
  "Chinese (Min Bei)",
  "Belarusan",
  "Zhuang (Northern)",
  "Arabic (Najdi Spoken)",
  "Pashto (Northern)",
  "Somali",
  "Malagasy",
  "Arabic (Tunisian Spoken)",
  "Rwanda",
  "Zulu",
  "Latin",
  "Bulgarian",
  "Swedish",
  "Lombard",
  "Oromo (West-central)",
  "Pashto (Southern)",
  "Kazakh",
  "Ilocano",
  "Tatar",
  "Fulfulde (Nigerian)",
  "Arabic (Sanaani Spoken)",
  "Uyghur",
  "Haitian Creole French",
  "Azerbaijani, North",
  "Napoletano-calabrese",
  "Khmer (Central)",
  "Farsi (Eastern)",
  "Akan",
  "Hiligaynon",
  "Kurmanji",
  "Shona"
]

# Example data
EXAMPLES = [
    # More people would learn from their mistakes if they weren't so busy denying them.
    ["Többen tanulnának a hibáikból, ha nem lennének annyira elfoglalva, hogy tagadják azokat.", "Hungarian", "English"],
    ["La mejor venganza es el éxito masivo.", "Spanish", "English"],
    ["Tout est bien qui finit bien.", "French", "English"],
    ["Lasciate ogne speranza, voi ch'intrate.", "Italian", "English"],
    ["Errare humanum est.", "Latin", "English"],

    # ["Brargh-ains argh-uh foo-duh", "English"],
    # ["I Want to eat your brains", "Zombie Speak"],
    # ["Bonjour, comment ça va?", "English"],
    # ["Hola, ¿cómo estás?", "English"],
    # ["你好吗?", "English"],
    # ["Guten Tag, wie geht es Ihnen?", "English"],
    # ["Привет, как ты?", "English"],
    # ["مرحبًا ، كيف حالك؟", "English"],
]
# Gradio interface
with gr.Blocks(title=title) as demo:
    gr.HTML(f"<div style=\"text-align: center;\"><h1>RWKV-5 World v2 - {title}</h1></div>")
    gr.Markdown("This is the RWKV-5 World v2 1B5 model tailored for translation tasks. All on 8 vCPUs")
    
    # Input and output components
    text = gr.Textbox(lines=5, label="Source Text", placeholder="Enter the text you want to translate...", value=EXAMPLES[0][0])
    source_language = gr.Dropdown(choices=LANGUAGES, label="Source Language", value=EXAMPLES[0][1])
    target_language = gr.Dropdown(choices=LANGUAGES, label="Target Language", value=EXAMPLES[0][2])
    output = gr.Textbox(lines=5, label="Translated Text")

    # Submission
    submit = gr.Button("Translate", variant="primary")
    
    # Example data
    data = gr.Dataset(components=[text, source_language, target_language], samples=EXAMPLES, label="Example Translations", headers=["Source Text", "Source Language", "Target Language"])
    
    # Button action
    submit.click(translate, [text, source_language, target_language], [output])
    data.click(lambda x: x, [data], [text, source_language, target_language])

# Gradio launch
demo.queue(concurrency_count=1, max_size=10)
demo.launch(share=False, debug=True)