import gradio as gr import os, gc, copy, torch from huggingface_hub import hf_hub_download from pynvml import * # Flag to check if GPU is present HAS_GPU = False # Model title and context size limit ctx_limit = 2000 title = "RWKV-5-World-1B5-v2-Translator" model_file = "RWKV-5-World-1B5-v2-20231025-ctx4096" # Get the GPU count try: nvmlInit() GPU_COUNT = nvmlDeviceGetCount() if GPU_COUNT > 0: HAS_GPU = True gpu_h = nvmlDeviceGetHandleByIndex(0) except NVMLError as error: print(error) os.environ["RWKV_JIT_ON"] = '1' # Model strategy to use MODEL_STRAT = "cpu bf16" os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) # Switch to GPU mode if HAS_GPU: os.environ["RWKV_CUDA_ON"] = '1' MODEL_STRAT = "cuda bf16" # Load the model from rwkv.model import RWKV model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{model_file}.pth") model = RWKV(model=model_path, strategy=MODEL_STRAT) from rwkv.utils import PIPELINE pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # State copy def universal_deepcopy(obj): if hasattr(obj, 'clone'): # Assuming it's a tensor if it has a clone method return obj.clone() elif isinstance(obj, list): return [universal_deepcopy(item) for item in obj] else: return copy.deepcopy(obj) # For debgging mostly def inspect_structure(obj, depth=0): indent = " " * depth obj_type = type(obj).__name__ if isinstance(obj, list): print(f"{indent}List (length {len(obj)}):") for item in obj: inspect_structure(item, depth + 1) elif isinstance(obj, dict): print(f"{indent}Dict (length {len(obj)}):") for key, value in obj.items(): print(f"{indent} Key: {key}") inspect_structure(value, depth + 1) else: print(f"{indent}{obj_type}") # Precomputation of the state def precompute_state(text): state = None text_encoded = pipeline.encode(text) _, state = model.forward(text_encoded, state) return state # Precomputing the base instruction set INSTRUCT_PREFIX = f''' You are a translator bot that can translate text to any language. And will respond only with the translated text, without additional comments. ## From English: It is not enough to know, we must also apply; it is not enough to will, we must also do. ## To Polish: Nie wystarczy wiedzieć, trzeba także zastosować; nie wystarczy chcieć, trzeba też działać. ## From Spanish: La muerte no nos concierne, porque mientras existamos, la muerte no está aquí. Y cuando llega, ya no existimos. ## To English: Death does not concern us, because as long as we exist, death is not here. And when it does come, we no longer exist. ''' # Get the prefix state PREFIX_STATE = precompute_state(INSTRUCT_PREFIX) # Translation logic def translate( text, source_language, target_language, inState=PREFIX_STATE, temperature=0.2, top_p=0.5, presencePenalty = 0.1, countPenalty = 0.1, ): prompt = f"## From {source_language}:\n{text}\n\n## To {target_language}:\n" ctx = prompt.strip() all_tokens = [] out_last = 0 out_str = '' occurrence = {} alpha_frequency = countPenalty alpha_presence = presencePenalty state = None if inState != None: state = universal_deepcopy(inState) # Clear GC gc.collect() if HAS_GPU == True : torch.cuda.empty_cache() # Generate things token by token for i in range(ctx_limit): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) for n in occurrence: out[n] -= (alpha_presence + occurrence[n] * alpha_frequency) token = pipeline.sample_logits(out, temperature=temperature, top_p=top_p) if token in [0]: # EOS token break all_tokens += [token] for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp out_last = i + 1 else: return out_str.strip() if "\n:" in out_str : out_str = out_str.split("\n\nHuman:")[0].split("\nHuman:")[0] return out_str.strip() if "{source_language}:" in out_str : out_str = out_str.split("{source_language}:")[0] return out_str.strip() if "{target_language}:" in out_str : out_str = out_str.split("{target_language}:")[0] return out_str.strip() if "\nHuman:" in out_str : out_str = out_str.split("\n\nHuman:")[0].split("\nHuman:")[0] return out_str.strip() if "\nAssistant:" in out_str : out_str = out_str.split("\n\nAssistant:")[0].split("\nAssistant:")[0] return out_str.strip() if "\n#" in out_str : out_str = out_str.split("\n\n#")[0].split("\n#")[0] return out_str.strip() # Yield for streaming yield out_str.strip() del out del state # # Clear GC # gc.collect() # if HAS_GPU == True : # torch.cuda.empty_cache() # yield out_str.strip() return out_str.strip() # Languages LANGUAGES = [ "English", "Chinese", "Spanish", "Bengali", "Hindi", "Portuguese", "Russian", "Japanese", "German", "Chinese (Wu)", "Javanese", "Korean", "French", "Vietnamese", "Telugu", "Chinese (Yue)", "Marathi", "Tamil", "Turkish", "Urdu", "Chinese (Min Nan)", "Chinese (Jin Yu)", "Gujarati", "Polish", "Arabic (Egyptian Spoken)", "Ukrainian", "Italian", "Chinese (Xiang)", "Malayalam", "Chinese (Hakka)", "Kannada", "Oriya", "Panjabi (Western)", "Panjabi (Eastern)", "Sunda", "Romanian", "Bhojpuri", "Azerbaijani (South)", "Farsi (Western)", "Maithili", "Hausa", "Arabic (Algerian Spoken)", "Burmese", "Serbo-Croatian", "Chinese (Gan)", "Awadhi", "Thai", "Dutch", "Yoruba", "Sindhi", "Arabic (Moroccan Spoken)", "Arabic (Saidi Spoken)", "Uzbek, Northern", "Malay", "Amharic", "Indonesian", "Igbo", "Tagalog", "Nepali", "Arabic (Sudanese Spoken)", "Saraiki", "Cebuano", "Arabic (North Levantine Spoken)", "Thai (Northeastern)", "Assamese", "Hungarian", "Chittagonian", "Arabic (Mesopotamian Spoken)", "Madura", "Sinhala", "Haryanvi", "Marwari", "Czech", "Greek", "Magahi", "Chhattisgarhi", "Deccan", "Chinese (Min Bei)", "Belarusan", "Zhuang (Northern)", "Arabic (Najdi Spoken)", "Pashto (Northern)", "Somali", "Malagasy", "Arabic (Tunisian Spoken)", "Rwanda", "Zulu", "Latin", "Bulgarian", "Swedish", "Lombard", "Oromo (West-central)", "Pashto (Southern)", "Kazakh", "Ilocano", "Tatar", "Fulfulde (Nigerian)", "Arabic (Sanaani Spoken)", "Uyghur", "Haitian Creole French", "Azerbaijani, North", "Napoletano-calabrese", "Khmer (Central)", "Farsi (Eastern)", "Akan", "Hiligaynon", "Kurmanji", "Shona" ] # Example data EXAMPLES = [ # More people would learn from their mistakes if they weren't so busy denying them. ["Többen tanulnának a hibáikból, ha nem lennének annyira elfoglalva, hogy tagadják azokat.", "Hungarian", "English"], ["La mejor venganza es el éxito masivo.", "Spanish", "English"], ["Tout est bien qui finit bien.", "French", "English"], ["Lasciate ogne speranza, voi ch'intrate.", "Italian", "English"], ["Errare humanum est.", "Latin", "English"], # ["Brargh-ains argh-uh foo-duh", "English"], # ["I Want to eat your brains", "Zombie Speak"], # ["Bonjour, comment ça va?", "English"], # ["Hola, ¿cómo estás?", "English"], # ["你好吗?", "English"], # ["Guten Tag, wie geht es Ihnen?", "English"], # ["Привет, как ты?", "English"], # ["مرحبًا ، كيف حالك؟", "English"], ] # Gradio interface with gr.Blocks(title=title) as demo: gr.HTML(f"