|
import re |
|
import gradio as gr |
|
from dataclasses import dataclass |
|
from prettytable import PrettyTable |
|
|
|
from pytorch_ie.annotations import LabeledSpan, BinaryRelation |
|
from pytorch_ie.auto import AutoPipeline |
|
from pytorch_ie.core import AnnotationList, annotation_field |
|
from pytorch_ie.documents import TextBasedDocument |
|
from pytorch_ie.taskmodules import * |
|
from pytorch_ie.models import * |
|
|
|
|
|
from typing import List |
|
|
|
|
|
@dataclass |
|
class ExampleDocument(TextBasedDocument): |
|
entities: AnnotationList[LabeledSpan] = annotation_field(target="text") |
|
relations: AnnotationList[BinaryRelation] = annotation_field(target="entities") |
|
|
|
|
|
ner_model_name_or_path = "pie/example-ner-spanclf-conll03" |
|
re_model_name_or_path = "pie/example-re-textclf-tacred" |
|
|
|
ner_pipeline = AutoPipeline.from_pretrained(ner_model_name_or_path, device=-1, num_workers=0) |
|
re_pipeline = AutoPipeline.from_pretrained(re_model_name_or_path, device=-1, num_workers=0, taskmodule_kwargs=dict(create_relation_candidates=True)) |
|
|
|
|
|
def predict(text): |
|
document = ExampleDocument(text) |
|
|
|
|
|
ner_pipeline(document) |
|
|
|
|
|
print(f"detected entities:") |
|
for entity in document.entities.predictions: |
|
print(f"'{entity}', label={entity.label}, score={entity.score}") |
|
document.entities.append(entity.copy()) |
|
|
|
|
|
re_pipeline(document) |
|
|
|
t = PrettyTable() |
|
t.field_names = ["head", "tail", "relation"] |
|
t.align = "l" |
|
for relation in document.relations.predictions: |
|
t.add_row([str(relation.head), str(relation.tail), relation.label]) |
|
|
|
html = t.get_html_string(format=True) |
|
html = ( |
|
"<div style='max-width:100%; max-height:360px; overflow:auto'>" |
|
+ html |
|
+ "</div>" |
|
) |
|
|
|
return html |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs=gr.inputs.Textbox( |
|
lines=5, |
|
default="“Making a super tasty alt-chicken wing is only half of it,” said Po Bronson, general partner at SOSV and managing director of IndieBio.", |
|
), |
|
outputs="html", |
|
) |
|
iface.launch() |
|
|