Spaces:
Runtime error
Runtime error
added functionality for long text+comments removed
Browse files
app.py
CHANGED
@@ -4,13 +4,6 @@
|
|
4 |
# In[ ]:
|
5 |
|
6 |
|
7 |
-
# conver mp3 to wav
|
8 |
-
# ffmpeg -i test_5.mp3 -b:a 16000 test_5.wav
|
9 |
-
|
10 |
-
|
11 |
-
# In[1]:
|
12 |
-
|
13 |
-
|
14 |
#Importing all the necessary packages
|
15 |
import nltk
|
16 |
import librosa
|
@@ -21,7 +14,7 @@ from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
|
|
21 |
nltk.download("punkt")
|
22 |
|
23 |
|
24 |
-
# In[
|
25 |
|
26 |
|
27 |
#Loading the model and the tokenizer
|
@@ -32,7 +25,7 @@ tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name)#omdel_name
|
|
32 |
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
33 |
|
34 |
|
35 |
-
# In[
|
36 |
|
37 |
|
38 |
def load_data(input_file):
|
@@ -50,7 +43,7 @@ def load_data(input_file):
|
|
50 |
return speech
|
51 |
|
52 |
|
53 |
-
# In[
|
54 |
|
55 |
|
56 |
def correct_casing(input_sentence):
|
@@ -60,7 +53,7 @@ def correct_casing(input_sentence):
|
|
60 |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
61 |
|
62 |
|
63 |
-
# In[
|
64 |
|
65 |
|
66 |
def asr_transcript(input_file):
|
@@ -80,7 +73,7 @@ def asr_transcript(input_file):
|
|
80 |
return transcription
|
81 |
|
82 |
|
83 |
-
# In[
|
84 |
|
85 |
|
86 |
def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ):
|
@@ -112,32 +105,7 @@ def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ):
|
|
112 |
|
113 |
return transcript
|
114 |
|
115 |
-
|
116 |
-
from pydub.silence import split_on_silence
|
117 |
-
from pydub.playback import play
|
118 |
-
|
119 |
-
sound = AudioSegment.from_file("./test_2.wav", format="wav")
|
120 |
-
chunks = split_on_silence(
|
121 |
-
sound,
|
122 |
-
|
123 |
-
# split on silences longer than 1000ms (1 sec)
|
124 |
-
min_silence_len=5000,
|
125 |
-
|
126 |
-
# anything under -16 dBFS is considered silence
|
127 |
-
silence_thresh=-32,
|
128 |
-
|
129 |
-
# keep 200 ms of leading/trailing silence
|
130 |
-
keep_silence=500
|
131 |
-
)#read the file
|
132 |
-
speech, sample_rate = librosa.load('./test_2.wav')
|
133 |
-
#make it 1-D
|
134 |
-
if len(speech.shape) > 1:
|
135 |
-
speech = speech[:,0] + speech[:,1]
|
136 |
-
#Resampling at 16KHz since wav2vec2-base-960h is pretrained and fine-tuned on speech audio sampled at 16 KHz.
|
137 |
-
if sample_rate !=16000:
|
138 |
-
speech = librosa.resample(speech, sample_rate,16000)
|
139 |
-
part_of_speech = librosa.effects.split(speech)idx = -1
|
140 |
-
IPython.display.Audio(data=speech[part_of_speech[idx,0]:part_of_speech[idx,1]], rate=16000)
|
141 |
# In[ ]:
|
142 |
|
143 |
|
@@ -149,39 +117,3 @@ gr.Interface(asr_transcript_long,
|
|
149 |
description = "This application displays transcribed text for given audio input",
|
150 |
examples = [["Test_File1.wav"], ["Test_File2.wav"], ["Test_File3.wav"]], theme="grass").launch()
|
151 |
|
152 |
-
|
153 |
-
# In[ ]:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
# In[ ]:
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
# In[ ]:
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
# In[7]:
|
172 |
-
|
173 |
-
|
174 |
-
#temp = asr_transcript_long('./test_2.wav')
|
175 |
-
|
176 |
-
|
177 |
-
# In[ ]:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
# In[ ]:
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
4 |
# In[ ]:
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
#Importing all the necessary packages
|
8 |
import nltk
|
9 |
import librosa
|
|
|
14 |
nltk.download("punkt")
|
15 |
|
16 |
|
17 |
+
# In[ ]:
|
18 |
|
19 |
|
20 |
#Loading the model and the tokenizer
|
|
|
25 |
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
26 |
|
27 |
|
28 |
+
# In[ ]:
|
29 |
|
30 |
|
31 |
def load_data(input_file):
|
|
|
43 |
return speech
|
44 |
|
45 |
|
46 |
+
# In[ ]:
|
47 |
|
48 |
|
49 |
def correct_casing(input_sentence):
|
|
|
53 |
return (' '.join([s.replace(s[0],s[0].capitalize(),1) for s in sentences]))
|
54 |
|
55 |
|
56 |
+
# In[ ]:
|
57 |
|
58 |
|
59 |
def asr_transcript(input_file):
|
|
|
73 |
return transcription
|
74 |
|
75 |
|
76 |
+
# In[ ]:
|
77 |
|
78 |
|
79 |
def asr_transcript_long(input_file,tokenizer=tokenizer, model=model ):
|
|
|
105 |
|
106 |
return transcript
|
107 |
|
108 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
# In[ ]:
|
110 |
|
111 |
|
|
|
117 |
description = "This application displays transcribed text for given audio input",
|
118 |
examples = [["Test_File1.wav"], ["Test_File2.wav"], ["Test_File3.wav"]], theme="grass").launch()
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|