|
import os |
|
|
|
|
|
|
|
os.system('pip install -q torch==1.10.0+cu111 torchvision==0.11+cu111 -f https://download.pytorch.org/whl/torch_stable.html') |
|
|
|
|
|
|
|
|
|
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') |
|
|
|
import detectron2 |
|
from detectron2.utils.logger import setup_logger |
|
setup_logger() |
|
|
|
import gradio as gr |
|
import re |
|
import string |
|
import torch |
|
|
|
from operator import itemgetter |
|
import collections |
|
|
|
import pypdf |
|
from pypdf import PdfReader |
|
from pypdf.errors import PdfReadError |
|
|
|
import pdf2image |
|
from pdf2image import convert_from_path |
|
import langdetect |
|
from langdetect import detect_langs |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import random |
|
import tempfile |
|
import itertools |
|
|
|
from matplotlib import font_manager |
|
from PIL import Image, ImageDraw, ImageFont |
|
import cv2 |
|
|
|
import pathlib |
|
from pathlib import Path |
|
import shutil |
|
|
|
from functools import partial |
|
|
|
|
|
print(os.popen(f'cat /etc/debian_version').read()) |
|
print(os.popen(f'cat /etc/issue').read()) |
|
print(os.popen(f'apt search tesseract').read()) |
|
import pytesseract |
|
|
|
|
|
|
|
|
|
label2color = { |
|
'Caption': 'brown', |
|
'Footnote': 'orange', |
|
'Formula': 'gray', |
|
'List-item': 'yellow', |
|
'Page-footer': 'red', |
|
'Page-header': 'red', |
|
'Picture': 'violet', |
|
'Section-header': 'orange', |
|
'Table': 'green', |
|
'Text': 'blue', |
|
'Title': 'pink' |
|
} |
|
|
|
|
|
cls_box = [0, 0, 0, 0] |
|
sep_box_lilt = cls_box |
|
sep_box_layoutxlm = [1000, 1000, 1000, 1000] |
|
|
|
|
|
model_id_lilt = "pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384" |
|
model_id_layoutxlm = "pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-linelevel-ml384" |
|
|
|
|
|
tokenizer_id_layoutxlm = "xlm-roberta-base" |
|
|
|
|
|
if str(384) in model_id_lilt: |
|
max_length_lilt = 384 |
|
elif str(512) in model_id_lilt: |
|
max_length_lilt = 512 |
|
else: |
|
print("Error with max_length_lilt of chunks!") |
|
|
|
if str(384) in model_id_layoutxlm: |
|
max_length_layoutxlm = 384 |
|
elif str(512) in model_id_layoutxlm: |
|
max_length_layoutxlm = 512 |
|
else: |
|
print("Error with max_length_layoutxlm of chunks!") |
|
|
|
|
|
doc_stride = 128 |
|
|
|
|
|
max_imgboxes = 1 |
|
|
|
|
|
examples_dir = 'files/' |
|
Path(examples_dir).mkdir(parents=True, exist_ok=True) |
|
from huggingface_hub import hf_hub_download |
|
files = ["example.pdf", "blank.pdf", "blank.png", "languages_iso.csv", "languages_tesseract.csv", "wo_content.png"] |
|
for file_name in files: |
|
path_to_file = hf_hub_download( |
|
repo_id = "pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v3", |
|
filename = "files/" + file_name, |
|
repo_type = "space" |
|
) |
|
shutil.copy(path_to_file,examples_dir) |
|
|
|
|
|
image_wo_content = examples_dir + "wo_content.png" |
|
pdf_blank = examples_dir + "blank.pdf" |
|
image_blank = examples_dir + "blank.png" |
|
|
|
|
|
t = "files/languages_tesseract.csv" |
|
l = "files/languages_iso.csv" |
|
|
|
df_t = pd.read_csv(t) |
|
df_l = pd.read_csv(l) |
|
|
|
langs_t = df_t["Language"].to_list() |
|
langs_t = [lang_t.lower().strip().translate(str.maketrans('', '', string.punctuation)) for lang_t in langs_t] |
|
langs_l = df_l["Language"].to_list() |
|
langs_l = [lang_l.lower().strip().translate(str.maketrans('', '', string.punctuation)) for lang_l in langs_l] |
|
langscode_t = df_t["LangCode"].to_list() |
|
langscode_l = df_l["LangCode"].to_list() |
|
|
|
Tesseract2langdetect, langdetect2Tesseract = dict(), dict() |
|
for lang_t, langcode_t in zip(langs_t,langscode_t): |
|
try: |
|
if lang_t == "Chinese - Simplified".lower().strip().translate(str.maketrans('', '', string.punctuation)): lang_t = "chinese" |
|
index = langs_l.index(lang_t) |
|
langcode_l = langscode_l[index] |
|
Tesseract2langdetect[langcode_t] = langcode_l |
|
except: |
|
continue |
|
|
|
langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()} |
|
|
|
|
|
|
|
|
|
import torch |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
import transformers |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification |
|
tokenizer_lilt = AutoTokenizer.from_pretrained(model_id_lilt) |
|
model_lilt = AutoModelForTokenClassification.from_pretrained(model_id_lilt); |
|
model_lilt.to(device); |
|
|
|
|
|
from transformers import LayoutLMv2ForTokenClassification |
|
model_layoutxlm = LayoutLMv2ForTokenClassification.from_pretrained(model_id_layoutxlm); |
|
model_layoutxlm.to(device); |
|
|
|
|
|
from transformers import LayoutLMv2FeatureExtractor |
|
feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False) |
|
|
|
|
|
from transformers import AutoTokenizer |
|
tokenizer_layoutxlm = AutoTokenizer.from_pretrained(tokenizer_id_layoutxlm) |
|
|
|
|
|
id2label_lilt = model_lilt.config.id2label |
|
label2id_lilt = model_lilt.config.label2id |
|
num_labels_lilt = len(id2label_lilt) |
|
|
|
id2label_layoutxlm = model_layoutxlm.config.id2label |
|
label2id_layoutxlm = model_layoutxlm.config.label2id |
|
num_labels_layoutxlm = len(id2label_layoutxlm) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_data(results, factor, conf_min=0): |
|
|
|
data = {} |
|
for i in range(len(results['line_num'])): |
|
level = results['level'][i] |
|
block_num = results['block_num'][i] |
|
par_num = results['par_num'][i] |
|
line_num = results['line_num'][i] |
|
top, left = results['top'][i], results['left'][i] |
|
width, height = results['width'][i], results['height'][i] |
|
conf = results['conf'][i] |
|
text = results['text'][i] |
|
if not (text == '' or text.isspace()): |
|
if conf >= conf_min: |
|
tup = (text, left, top, width, height) |
|
if block_num in list(data.keys()): |
|
if par_num in list(data[block_num].keys()): |
|
if line_num in list(data[block_num][par_num].keys()): |
|
data[block_num][par_num][line_num].append(tup) |
|
else: |
|
data[block_num][par_num][line_num] = [tup] |
|
else: |
|
data[block_num][par_num] = {} |
|
data[block_num][par_num][line_num] = [tup] |
|
else: |
|
data[block_num] = {} |
|
data[block_num][par_num] = {} |
|
data[block_num][par_num][line_num] = [tup] |
|
|
|
|
|
par_data = {} |
|
par_idx = 1 |
|
for _, b in data.items(): |
|
for _, p in b.items(): |
|
line_data = {} |
|
line_idx = 1 |
|
for _, l in p.items(): |
|
line_data[line_idx] = l |
|
line_idx += 1 |
|
par_data[par_idx] = line_data |
|
par_idx += 1 |
|
|
|
|
|
lines = list() |
|
row_indexes = list() |
|
row_index = 0 |
|
for _,par in par_data.items(): |
|
count_lines = 0 |
|
for _,line in par.items(): |
|
if count_lines == 0: row_indexes.append(row_index) |
|
line_text = ' '.join([item[0] for item in line]) |
|
lines.append(line_text) |
|
count_lines += 1 |
|
row_index += 1 |
|
|
|
row_index += 1 |
|
|
|
|
|
|
|
|
|
par_boxes = list() |
|
par_idx = 1 |
|
line_boxes = list() |
|
line_idx = 1 |
|
for _, par in par_data.items(): |
|
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list() |
|
for _, line in par.items(): |
|
xmin, ymin = line[0][1], line[0][2] |
|
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4]) |
|
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)]) |
|
xmins.append(xmin) |
|
ymins.append(ymin) |
|
xmaxs.append(xmax) |
|
ymaxs.append(ymax) |
|
line_idx += 1 |
|
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs) |
|
par_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)]) |
|
par_idx += 1 |
|
|
|
return lines, row_indexes, par_boxes, line_boxes |
|
|
|
|
|
def set_image_dpi_resize(image): |
|
""" |
|
Rescaling image to 300dpi while resizing |
|
:param image: An image |
|
:return: A rescaled image |
|
""" |
|
length_x, width_y = image.size |
|
factor = min(1, float(1024.0 / length_x)) |
|
size = int(factor * length_x), int(factor * width_y) |
|
|
|
image_resize = image.resize(size, Image.LANCZOS) |
|
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='1.png') |
|
temp_filename = temp_file.name |
|
image_resize.save(temp_filename, dpi=(300, 300)) |
|
return factor, temp_filename |
|
|
|
|
|
|
|
def upperleft_to_lowerright(bbox): |
|
x0, y0, x1, y1 = tuple(bbox) |
|
if bbox[2] < bbox[0]: |
|
x0 = bbox[2] |
|
x1 = bbox[0] |
|
if bbox[3] < bbox[1]: |
|
y0 = bbox[3] |
|
y1 = bbox[1] |
|
return [x0, y0, x1, y1] |
|
|
|
|
|
def convert_box(bbox): |
|
x, y, w, h = tuple(bbox) |
|
return [x, y, x+w, y+h] |
|
|
|
|
|
def normalize_box(bbox, width, height): |
|
return [ |
|
int(1000 * (bbox[0] / width)), |
|
int(1000 * (bbox[1] / height)), |
|
int(1000 * (bbox[2] / width)), |
|
int(1000 * (bbox[3] / height)), |
|
] |
|
|
|
|
|
def denormalize_box(bbox, width, height): |
|
return [ |
|
int(width * (bbox[0] / 1000)), |
|
int(height * (bbox[1] / 1000)), |
|
int(width* (bbox[2] / 1000)), |
|
int(height * (bbox[3] / 1000)), |
|
] |
|
|
|
|
|
def original_box(box, original_width, original_height, coco_width, coco_height): |
|
return [ |
|
int(original_width * (box[0] / coco_width)), |
|
int(original_height * (box[1] / coco_height)), |
|
int(original_width * (box[2] / coco_width)), |
|
int(original_height* (box[3] / coco_height)), |
|
] |
|
|
|
def get_blocks(bboxes_block, categories, texts): |
|
|
|
|
|
bbox_block_dict, bboxes_block_list, bbox_block_prec = dict(), list(), list() |
|
for count_block, bbox_block in enumerate(bboxes_block): |
|
if bbox_block != bbox_block_prec: |
|
bbox_block_indexes = [i for i, bbox in enumerate(bboxes_block) if bbox == bbox_block] |
|
bbox_block_dict[count_block] = bbox_block_indexes |
|
bboxes_block_list.append(bbox_block) |
|
bbox_block_prec = bbox_block |
|
|
|
|
|
category_block_list, text_block_list = list(), list() |
|
for bbox_block in bboxes_block_list: |
|
count_block = bboxes_block.index(bbox_block) |
|
bbox_block_indexes = bbox_block_dict[count_block] |
|
category_block = np.array(categories, dtype=object)[bbox_block_indexes].tolist()[0] |
|
category_block_list.append(category_block) |
|
text_block = np.array(texts, dtype=object)[bbox_block_indexes].tolist() |
|
text_block = [text.replace("\n","").strip() for text in text_block] |
|
if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote": |
|
text_block = ' '.join(text_block) |
|
else: |
|
text_block = '\n'.join(text_block) |
|
text_block_list.append(text_block) |
|
|
|
return bboxes_block_list, category_block_list, text_block_list |
|
|
|
|
|
def get_sorted_boxes(bboxes): |
|
|
|
|
|
sorted_bboxes = sorted(bboxes, key=itemgetter(1), reverse=False) |
|
y_list = [bbox[1] for bbox in sorted_bboxes] |
|
|
|
|
|
if len(list(set(y_list))) != len(y_list): |
|
y_list_duplicates_indexes = dict() |
|
y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1] |
|
for item in y_list_duplicates: |
|
y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item] |
|
bbox_list_y_duplicates = sorted(np.array(sorted_bboxes, dtype=object)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False) |
|
np_array_bboxes = np.array(sorted_bboxes) |
|
np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates) |
|
sorted_bboxes = np_array_bboxes.tolist() |
|
|
|
return sorted_bboxes |
|
|
|
|
|
def sort_data(bboxes, categories, texts): |
|
|
|
sorted_bboxes = get_sorted_boxes(bboxes) |
|
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes] |
|
sorted_categories = np.array(categories, dtype=object)[sorted_bboxes_indexes].tolist() |
|
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist() |
|
|
|
return sorted_bboxes, sorted_categories, sorted_texts |
|
|
|
|
|
def sort_data_wo_labels(bboxes, texts): |
|
|
|
sorted_bboxes = get_sorted_boxes(bboxes) |
|
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes] |
|
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist() |
|
|
|
return sorted_bboxes, sorted_texts |
|
|
|
|
|
|
|
|
|
def pdf_to_images(uploaded_pdf): |
|
|
|
|
|
if uploaded_pdf is None: |
|
path_to_file = pdf_blank |
|
filename = path_to_file.replace(examples_dir,"") |
|
msg = "Invalid PDF file." |
|
images = [Image.open(image_blank)] |
|
else: |
|
|
|
path_to_file = uploaded_pdf.name |
|
filename = path_to_file.replace("/tmp/","") |
|
|
|
try: |
|
PdfReader(path_to_file) |
|
except PdfReadError: |
|
path_to_file = pdf_blank |
|
filename = path_to_file.replace(examples_dir,"") |
|
msg = "Invalid PDF file." |
|
images = [Image.open(image_blank)] |
|
else: |
|
try: |
|
images = convert_from_path(path_to_file, last_page=max_imgboxes) |
|
num_imgs = len(images) |
|
msg = f'The PDF "{filename}" was converted into {num_imgs} images.' |
|
except: |
|
msg = f'Error with the PDF "{filename}": it was not converted into images.' |
|
images = [Image.open(image_wo_content)] |
|
|
|
return filename, msg, images |
|
|
|
|
|
def extraction_data_from_image(images): |
|
|
|
num_imgs = len(images) |
|
|
|
if num_imgs > 0: |
|
|
|
|
|
custom_config = r'--oem 3 --psm 3 -l eng' |
|
results, lines, row_indexes, par_boxes, line_boxes, images_pixels = dict(), dict(), dict(), dict(), dict(), dict() |
|
images_ids_list, lines_list, par_boxes_list, line_boxes_list, images_list, images_pixels_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list(), list() |
|
|
|
try: |
|
for i,image in enumerate(images): |
|
|
|
|
|
img = image.copy() |
|
factor, path_to_img = set_image_dpi_resize(img) |
|
img = Image.open(path_to_img) |
|
img = np.array(img, dtype='uint8') |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) |
|
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY) |
|
|
|
|
|
txt = pytesseract.image_to_string(img, config=custom_config) |
|
txt = txt.strip().lower() |
|
txt = re.sub(r" +", " ", txt) |
|
txt = re.sub(r"(\n\s*)+\n+", "\n", txt) |
|
|
|
try: |
|
langs = detect_langs(txt) |
|
langs = [langdetect2Tesseract[langs[i].lang] for i in range(len(langs))] |
|
langs_string = '+'.join(langs) |
|
except: |
|
langs_string = "eng" |
|
langs_string += '+osd' |
|
custom_config = f'--oem 3 --psm 3 -l {langs_string}' |
|
|
|
|
|
results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT) |
|
|
|
|
|
|
|
images_pixels[i] = feature_extractor(images[i], return_tensors="pt").pixel_values |
|
|
|
lines[i], row_indexes[i], par_boxes[i], line_boxes[i] = get_data(results[i], factor, conf_min=0) |
|
lines_list.append(lines[i]) |
|
par_boxes_list.append(par_boxes[i]) |
|
line_boxes_list.append(line_boxes[i]) |
|
images_ids_list.append(i) |
|
images_pixels_list.append(images_pixels[i]) |
|
images_list.append(images[i]) |
|
page_no_list.append(i) |
|
num_pages_list.append(num_imgs) |
|
|
|
except: |
|
print(f"There was an error within the extraction of PDF text by the OCR!") |
|
else: |
|
from datasets import Dataset |
|
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "images_pixels": images_pixels_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts": lines_list, "bboxes_line": line_boxes_list}) |
|
|
|
|
|
|
|
return dataset, lines, row_indexes, par_boxes, line_boxes |
|
|
|
|
|
|
|
def prepare_inference_features(example, tokenizer, max_length, cls_box, sep_box): |
|
|
|
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list, images_pixels_list = list(), list(), list(), list(), list(), list() |
|
|
|
|
|
batch_images_ids = example["images_ids"] |
|
batch_images = example["images"] |
|
batch_images_pixels = example["images_pixels"] |
|
batch_bboxes_line = example["bboxes_line"] |
|
batch_texts = example["texts"] |
|
batch_images_size = [image.size for image in batch_images] |
|
|
|
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size] |
|
|
|
|
|
if not isinstance(batch_images_ids, list): |
|
batch_images_ids = [batch_images_ids] |
|
batch_images = [batch_images] |
|
batch_images_pixels = [batch_images_pixels] |
|
batch_bboxes_line = [batch_bboxes_line] |
|
batch_texts = [batch_texts] |
|
batch_width, batch_height = [batch_width], [batch_height] |
|
|
|
|
|
for num_batch, (image_id, image_pixels, boxes, texts, width, height) in enumerate(zip(batch_images_ids, batch_images_pixels, batch_bboxes_line, batch_texts, batch_width, batch_height)): |
|
tokens_list = [] |
|
bboxes_list = [] |
|
|
|
|
|
if not isinstance(texts, list): |
|
texts, boxes = [texts], [boxes] |
|
|
|
|
|
normalize_bboxes_line = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes] |
|
|
|
|
|
|
|
boxes, texts = sort_data_wo_labels(normalize_bboxes_line, texts) |
|
|
|
count = 0 |
|
for box, text in zip(boxes, texts): |
|
tokens = tokenizer.tokenize(text) |
|
num_tokens = len(tokens) |
|
tokens_list.extend(tokens) |
|
|
|
bboxes_list.extend([box] * num_tokens) |
|
|
|
|
|
|
|
|
|
encodings = tokenizer(" ".join(texts), |
|
truncation=True, |
|
padding="max_length", |
|
max_length=max_length, |
|
stride=doc_stride, |
|
return_overflowing_tokens=True, |
|
return_offsets_mapping=True |
|
) |
|
|
|
otsm = encodings.pop("overflow_to_sample_mapping") |
|
offset_mapping = encodings.pop("offset_mapping") |
|
|
|
|
|
sequence_length_prev = 0 |
|
for i, offsets in enumerate(offset_mapping): |
|
|
|
sequence_length = len(encodings.input_ids[i]) - 2 |
|
if i == 0: start = 0 |
|
else: start += sequence_length_prev - doc_stride |
|
end = start + sequence_length |
|
sequence_length_prev = sequence_length |
|
|
|
|
|
bb = [cls_box] + bboxes_list[start:end] + [sep_box] |
|
|
|
|
|
|
|
if len(bb) < max_length: |
|
bb = bb + [sep_box] * (max_length - len(bb)) |
|
|
|
|
|
input_ids_list.append(encodings["input_ids"][i]) |
|
attention_mask_list.append(encodings["attention_mask"][i]) |
|
bb_list.append(bb) |
|
images_ids_list.append(image_id) |
|
chunks_ids_list.append(i) |
|
images_pixels_list.append(image_pixels) |
|
|
|
return { |
|
"images_ids": images_ids_list, |
|
"chunk_ids": chunks_ids_list, |
|
"input_ids": input_ids_list, |
|
"attention_mask": attention_mask_list, |
|
"normalized_bboxes": bb_list, |
|
"images_pixels": images_pixels_list |
|
} |
|
|
|
from torch.utils.data import Dataset |
|
|
|
class CustomDataset(Dataset): |
|
def __init__(self, dataset, tokenizer): |
|
self.dataset = dataset |
|
self.tokenizer = tokenizer |
|
|
|
def __len__(self): |
|
return len(self.dataset) |
|
|
|
def __getitem__(self, idx): |
|
|
|
example = self.dataset[idx] |
|
encoding = dict() |
|
encoding["images_ids"] = example["images_ids"] |
|
encoding["chunk_ids"] = example["chunk_ids"] |
|
encoding["input_ids"] = example["input_ids"] |
|
encoding["attention_mask"] = example["attention_mask"] |
|
encoding["bbox"] = example["normalized_bboxes"] |
|
encoding["images_pixels"] = example["images_pixels"] |
|
|
|
return encoding |
|
|
|
import torch.nn.functional as F |
|
|
|
|
|
def predictions_token_level(images, custom_encoded_dataset, model_id, model): |
|
|
|
num_imgs = len(images) |
|
if num_imgs > 0: |
|
|
|
chunk_ids, input_ids, bboxes, pixels_values, outputs, token_predictions = dict(), dict(), dict(), dict(), dict(), dict() |
|
images_ids_list = list() |
|
|
|
for i,encoding in enumerate(custom_encoded_dataset): |
|
|
|
|
|
image_id = encoding['images_ids'] |
|
chunk_id = encoding['chunk_ids'] |
|
input_id = torch.tensor(encoding['input_ids'])[None] |
|
attention_mask = torch.tensor(encoding['attention_mask'])[None] |
|
bbox = torch.tensor(encoding['bbox'])[None] |
|
pixel_values = torch.tensor(encoding["images_pixels"]) |
|
|
|
|
|
if image_id not in images_ids_list: images_ids_list.append(image_id) |
|
|
|
if image_id in chunk_ids: chunk_ids[image_id].append(chunk_id) |
|
else: chunk_ids[image_id] = [chunk_id] |
|
|
|
if image_id in input_ids: input_ids[image_id].append(input_id) |
|
else: input_ids[image_id] = [input_id] |
|
|
|
if image_id in bboxes: bboxes[image_id].append(bbox) |
|
else: bboxes[image_id] = [bbox] |
|
|
|
if image_id in pixels_values: pixels_values[image_id].append(pixel_values) |
|
else: pixels_values[image_id] = [pixel_values] |
|
|
|
|
|
with torch.no_grad(): |
|
|
|
if model_id == model_id_lilt: |
|
output = model( |
|
input_ids=input_id.to(device), |
|
attention_mask=attention_mask.to(device), |
|
bbox=bbox.to(device), |
|
) |
|
elif model_id == model_id_layoutxlm: |
|
output = model( |
|
input_ids=input_id.to(device), |
|
attention_mask=attention_mask.to(device), |
|
bbox=bbox.to(device), |
|
image=pixel_values.to(device) |
|
) |
|
|
|
|
|
if image_id in outputs: outputs[image_id].append(F.softmax(output.logits.squeeze(), dim=-1)) |
|
else: outputs[image_id] = [F.softmax(output.logits.squeeze(), dim=-1)] |
|
|
|
return outputs, images_ids_list, chunk_ids, input_ids, bboxes |
|
|
|
else: |
|
print("An error occurred while getting predictions!") |
|
|
|
from functools import reduce |
|
|
|
|
|
def predictions_line_level(max_length, tokenizer, id2label, dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes, cls_box, sep_box): |
|
|
|
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict() |
|
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict() |
|
|
|
if len(images_ids_list) > 0: |
|
|
|
for i, image_id in enumerate(images_ids_list): |
|
|
|
|
|
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"] |
|
image = images_list[0] |
|
width, height = image.size |
|
|
|
|
|
chunk_ids_list = chunk_ids[image_id] |
|
outputs_list = outputs[image_id] |
|
input_ids_list = input_ids[image_id] |
|
bboxes_list = bboxes[image_id] |
|
|
|
|
|
ten_probs = torch.zeros((outputs_list[0].shape[0] - 2)*len(outputs_list), outputs_list[0].shape[1]) |
|
ten_input_ids = torch.ones(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list)), dtype =int) |
|
ten_bboxes = torch.zeros(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list), 4), dtype =int) |
|
|
|
if len(outputs_list) > 1: |
|
|
|
for num_output, (output, input_id, bbox) in enumerate(zip(outputs_list, input_ids_list, bboxes_list)): |
|
start = num_output*(max_length - 2) - max(0,num_output)*doc_stride |
|
end = start + (max_length - 2) |
|
|
|
if num_output == 0: |
|
ten_probs[start:end,:] += output[1:-1] |
|
ten_input_ids[:,start:end] = input_id[:,1:-1] |
|
ten_bboxes[:,start:end,:] = bbox[:,1:-1,:] |
|
else: |
|
ten_probs[start:start + doc_stride,:] += output[1:1 + doc_stride] |
|
ten_probs[start:start + doc_stride,:] = ten_probs[start:start + doc_stride,:] * 0.5 |
|
ten_probs[start + doc_stride:end,:] += output[1 + doc_stride:-1] |
|
|
|
ten_input_ids[:,start:start + doc_stride] = input_id[:,1:1 + doc_stride] |
|
ten_input_ids[:,start + doc_stride:end] = input_id[:,1 + doc_stride:-1] |
|
|
|
ten_bboxes[:,start:start + doc_stride,:] = bbox[:,1:1 + doc_stride,:] |
|
ten_bboxes[:,start + doc_stride:end,:] = bbox[:,1 + doc_stride:-1,:] |
|
|
|
else: |
|
ten_probs += outputs_list[0][1:-1] |
|
ten_input_ids = input_ids_list[0][:,1:-1] |
|
ten_bboxes = bboxes_list[0][:,1:-1] |
|
|
|
ten_probs_list, ten_input_ids_list, ten_bboxes_list = ten_probs.tolist(), ten_input_ids.tolist()[0], ten_bboxes.tolist()[0] |
|
bboxes_list = list() |
|
input_ids_dict, probs_dict = dict(), dict() |
|
bbox_prev = [-100, -100, -100, -100] |
|
for probs, input_id, bbox in zip(ten_probs_list, ten_input_ids_list, ten_bboxes_list): |
|
bbox = denormalize_box(bbox, width, height) |
|
if bbox != bbox_prev and bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]: |
|
bboxes_list.append(bbox) |
|
input_ids_dict[str(bbox)] = [input_id] |
|
probs_dict[str(bbox)] = [probs] |
|
elif bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]: |
|
input_ids_dict[str(bbox)].append(input_id) |
|
probs_dict[str(bbox)].append(probs) |
|
bbox_prev = bbox |
|
|
|
probs_bbox = dict() |
|
for i,bbox in enumerate(bboxes_list): |
|
probs = probs_dict[str(bbox)] |
|
probs = np.array(probs).T.tolist() |
|
|
|
probs_label = list() |
|
for probs_list in probs: |
|
prob_label = reduce(lambda x, y: x*y, probs_list) |
|
probs_label.append(prob_label) |
|
max_value = max(probs_label) |
|
max_index = probs_label.index(max_value) |
|
probs_bbox[str(bbox)] = max_index |
|
|
|
bboxes_list_dict[image_id] = bboxes_list |
|
input_ids_dict_dict[image_id] = input_ids_dict |
|
probs_dict_dict[image_id] = probs_bbox |
|
|
|
df[image_id] = pd.DataFrame() |
|
df[image_id]["bboxes"] = bboxes_list |
|
df[image_id]["texts"] = [tokenizer.decode(input_ids_dict[str(bbox)]) for bbox in bboxes_list] |
|
df[image_id]["labels"] = [id2label[probs_bbox[str(bbox)]] for bbox in bboxes_list] |
|
|
|
return probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df |
|
|
|
else: |
|
print("An error occurred while getting predictions!") |
|
|
|
|
|
def get_labeled_images(id2label, dataset, images_ids_list, bboxes_list_dict, probs_dict_dict): |
|
|
|
labeled_images = list() |
|
|
|
for i, image_id in enumerate(images_ids_list): |
|
|
|
|
|
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"] |
|
image = images_list[0] |
|
width, height = image.size |
|
|
|
|
|
bboxes_list = bboxes_list_dict[image_id] |
|
probs_bbox = probs_dict_dict[image_id] |
|
|
|
draw = ImageDraw.Draw(image) |
|
|
|
font = font_manager.FontProperties(family='sans-serif', weight='bold') |
|
font_file = font_manager.findfont(font) |
|
font_size = 30 |
|
font = ImageFont.truetype(font_file, font_size) |
|
|
|
for bbox in bboxes_list: |
|
predicted_label = id2label[probs_bbox[str(bbox)]] |
|
draw.rectangle(bbox, outline=label2color[predicted_label]) |
|
draw.text((bbox[0] + 10, bbox[1] - font_size), text=predicted_label, fill=label2color[predicted_label], font=font) |
|
|
|
labeled_images.append(image) |
|
|
|
return labeled_images |
|
|
|
|
|
def get_encoded_chunk_inference(tokenizer, dataset, encoded_dataset, index_chunk=None): |
|
|
|
|
|
example = dataset |
|
encoded_example = encoded_dataset |
|
|
|
|
|
if index_chunk == None: index_chunk = random.randint(0, len(encoded_example)-1) |
|
encoded_example = encoded_example[index_chunk] |
|
encoded_image_ids = encoded_example["images_ids"] |
|
|
|
|
|
example = example.filter(lambda example: example["images_ids"] == encoded_image_ids)[0] |
|
image = example["images"] |
|
width, height = image.size |
|
page_no = example["page_no"] |
|
num_pages = example["num_pages"] |
|
|
|
|
|
bboxes, input_ids = encoded_example["normalized_bboxes"][1:-1], encoded_example["input_ids"][1:-1] |
|
bboxes = [denormalize_box(bbox, width, height) for bbox in bboxes] |
|
num_tokens = len(input_ids) + 2 |
|
|
|
|
|
bboxes_list, input_ids_list = list(), list() |
|
input_ids_dict = dict() |
|
bbox_prev = [-100, -100, -100, -100] |
|
for i, (bbox, input_id) in enumerate(zip(bboxes, input_ids)): |
|
if bbox != bbox_prev: |
|
bboxes_list.append(bbox) |
|
input_ids_dict[str(bbox)] = [input_id] |
|
else: |
|
input_ids_dict[str(bbox)].append(input_id) |
|
|
|
|
|
bbox_prev = bbox |
|
|
|
|
|
if input_ids_dict[str(bboxes_list[-1])][0] == (tokenizer.convert_tokens_to_ids('</s>')): |
|
del input_ids_dict[str(bboxes_list[-1])] |
|
bboxes_list = bboxes_list[:-1] |
|
|
|
|
|
input_ids_list = input_ids_dict.values() |
|
texts_list = [tokenizer.decode(input_ids) for input_ids in input_ids_list] |
|
|
|
|
|
df = pd.DataFrame({"texts": texts_list, "input_ids": input_ids_list, "bboxes": bboxes_list}) |
|
|
|
return image, df, num_tokens, page_no, num_pages |
|
|
|
|
|
def display_chunk_lines_inference(dataset, encoded_dataset, index_chunk=None): |
|
|
|
|
|
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(dataset, encoded_dataset, index_chunk=index_chunk) |
|
|
|
|
|
input_ids = df["input_ids"] |
|
texts = df["texts"] |
|
bboxes = df["bboxes"] |
|
|
|
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n') |
|
|
|
|
|
print(">> PDF image with bounding boxes of lines\n") |
|
draw = ImageDraw.Draw(image) |
|
|
|
labels = list() |
|
for box, text in zip(bboxes, texts): |
|
color = "red" |
|
draw.rectangle(box, outline=color) |
|
|
|
|
|
width, height = image.size |
|
image = image.resize((int(0.5*width), int(0.5*height))) |
|
|
|
|
|
img = np.array(image, dtype='uint8') |
|
cv2_imshow(img) |
|
cv2.waitKey(0) |
|
|
|
|
|
print("\n>> Dataframe of annotated lines\n") |
|
cols = ["texts", "bboxes"] |
|
df = df[cols] |
|
display(df) |