pierreguillou
commited on
Commit
•
62697e4
1
Parent(s):
b509b08
Update app.py
Browse files
app.py
CHANGED
@@ -133,60 +133,84 @@ def app_outputs(uploaded_pdf):
|
|
133 |
return msg, img_files[0], img_files[1], images[0], images[1], csv_files[0], csv_files[1], df[0], df[1]
|
134 |
|
135 |
# gradio APP
|
136 |
-
with gr.Blocks(title="Inference APP for Document Understanding at line level (
|
137 |
gr.HTML("""
|
138 |
-
<div style="font-family:'Times New Roman', 'Serif'; font-size:26pt; font-weight:bold; text-align:center;"><h1>Inference APP for Document Understanding at line level (
|
139 |
-
<div style="margin-top: 40px"><p>(03/
|
140 |
-
<div><p
|
141 |
-
<div><p>It relies on an external OCR engine to get words and bounding boxes from the document image. Thus, let's run in this APP an OCR engine (<a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/madmaze/pytesseract#python-tesseract" target="_blank">PyTesseract</a>) to get the bounding boxes, then run Layout XLM base (already fine-tuned on the dataset DocLayNet base at line level) on the individual tokens and then, visualize the result at line level!</p></div>
|
142 |
-
<div><p><b>It allows to get all pages of any PDF (of any language) with bounding boxes labeled at line level and the associated dataframes with labeled data (bounding boxes, texts, labels) :-)</b></p></div>
|
143 |
-
<div><p>However, the inference time per page can be high when running the model on CPU due to the number of line predictions to be made. Therefore, to avoid running this APP for too long, <b>only the first 2 pages are processed by this APP</b>. If you want to increase this limit, you can either clone this APP in Hugging Face Space (or run its <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/piegu/language-models/blob/master/Gradio_inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb" target="_blank">notebook</a> on your own plateform) and change the value of the parameter <code>max_imgboxes</code>, or run the inference notebook "<a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/piegu/language-models/blob/master/inference_on_LayoutXLM_base_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb" target="_blank">Document AI | Inference at line level with a Document Understanding model (LayoutXLM base fine-tuned on DocLayNet dataset)</a>" on your own platform as it does not have this limit.</p></div>
|
144 |
-
<div style="margin-top: 20px"><p>More information about the DocLayNet datasets, the finetuning of the model and this APP in the following blog posts:</p>
|
145 |
-
<ul><li>(03/05/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="" target="_blank">Document AI | Inference APP and fine-tuning notebook for Document Understanding at line level with LayoutXLM base</a></li><li>(02/14/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-inference-app-for-document-understanding-at-line-level-a35bbfa98893" target="_blank">Document AI | Inference APP for Document Understanding at line level</a></li><li>(02/10/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8" target="_blank">Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset</a></li><li>(01/31/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956" target="_blank">Document AI | DocLayNet image viewer APP</a></li><li>(01/27/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb" target="_blank">Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)</a></li></ul></div>
|
146 |
""")
|
147 |
with gr.Row():
|
148 |
pdf_file = gr.File(label="PDF")
|
149 |
with gr.Row():
|
150 |
-
submit_btn = gr.Button(f"
|
151 |
-
reset_btn = gr.Button(value="Clear")
|
152 |
with gr.Row():
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
with gr.Row():
|
155 |
fileboxes = []
|
156 |
-
|
157 |
-
file_path = gr.File(visible=True, label=f"
|
|
|
|
|
|
|
158 |
fileboxes.append(file_path)
|
159 |
with gr.Row():
|
160 |
imgboxes = []
|
161 |
-
|
162 |
-
img = gr.Image(type="pil", label=f"Image
|
|
|
|
|
|
|
163 |
imgboxes.append(img)
|
164 |
with gr.Row():
|
165 |
csvboxes = []
|
166 |
-
|
167 |
-
csv = gr.File(visible=True, label=f"
|
|
|
|
|
|
|
168 |
csvboxes.append(csv)
|
169 |
with gr.Row():
|
170 |
dfboxes = []
|
171 |
-
|
172 |
df = gr.Dataframe(
|
173 |
headers=["bounding boxes", "texts", "labels"],
|
174 |
datatype=["str", "str", "str"],
|
175 |
col_count=(3, "fixed"),
|
176 |
visible=True,
|
177 |
-
label=f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
type="pandas",
|
179 |
wrap=True
|
180 |
)
|
181 |
dfboxes.append(df)
|
182 |
|
183 |
-
outputboxes =
|
|
|
184 |
submit_btn.click(app_outputs, inputs=[pdf_file], outputs=outputboxes)
|
|
|
|
|
185 |
reset_btn.click(
|
186 |
-
lambda: [pdf_file.update(value=None)
|
187 |
inputs=[],
|
188 |
-
outputs=[pdf_file
|
189 |
-
|
190 |
|
191 |
gr.Examples(
|
192 |
[["files/example.pdf"]],
|
|
|
133 |
return msg, img_files[0], img_files[1], images[0], images[1], csv_files[0], csv_files[1], df[0], df[1]
|
134 |
|
135 |
# gradio APP
|
136 |
+
with gr.Blocks(title="Inference APP for Document Understanding at line level (v1 - LiLT base vs LayoutXLM base)", css=".gradio-container") as demo:
|
137 |
gr.HTML("""
|
138 |
+
<div style="font-family:'Times New Roman', 'Serif'; font-size:26pt; font-weight:bold; text-align:center;"><h1>Inference APP for Document Understanding at line level (v1 - LiLT base vs LayoutXLM base)</h1></div>
|
139 |
+
<div style="margin-top: 40px"><p>(03/08/2023) This Inference APP compare - only on the first PDF page - 2 Document Understanding models finetuned on the dataset <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/datasets/pierreguillou/DocLayNet-base" target="_blank">DocLayNet base</a> at line level (chunk size of 384 tokens): <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384" target="_blank">LiLT base combined with XLM-RoBERTa base</a> and <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/pierreguillou/layout-xlm-base-finetuned-with-DocLayNet-base-at-linelevel-ml384" target="_blank">LayoutXLM base combined with XLM-RoBERTa base</a>.</p></div>
|
140 |
+
<div><p>To test these 2 models separately, use their corresponding APP on Hugging Face Spaces: <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v1" target="_blank">LiLT base APP (v1)</a> and <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v2" target="_blank">LayoutXLM base APP (v2)</a>.</p></div><div style="margin-top: 20px"><p>Links to Document Understanding APPs:</p><ul><li>Line level: <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v1" target="_blank">v1 (LiLT base)</a> | <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-v2" target="_blank">v2 (LayoutXLM base)</a> | <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-linelevel-LiLT-base-LayoutXLM-base-v1" target="_blank">v1 (LilT base vs LayoutXLM base)</a></li><li>Paragraph level: <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/spaces/pierreguillou/Inference-APP-Document-Understanding-at-paragraphlevel-v1" target="_blank">v1 (LiLT base)</a></li></ul></div><div style="margin-top: 20px"><p>More information about the DocLayNet datasets, the finetuning of the model and this APP in the following blog posts:</p><ul><li>(03/05/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="" target="_blank">Document AI | Inference APP and fine-tuning notebook for Document Understanding at line level with LayoutXLM base</a></li><li>(02/14/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-inference-app-for-document-understanding-at-line-level-a35bbfa98893" target="_blank">Document AI | Inference APP for Document Understanding at line level</a></li><li>(02/10/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8" target="_blank">Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset</a></li><li>(01/31/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956" target="_blank">Document AI | DocLayNet image viewer APP</a></li><li>(01/27/2023) <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb" target="_blank">Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)</a></li></ul></div>
|
|
|
|
|
|
|
|
|
|
|
141 |
""")
|
142 |
with gr.Row():
|
143 |
pdf_file = gr.File(label="PDF")
|
144 |
with gr.Row():
|
145 |
+
submit_btn = gr.Button(f"Get layout detection by LiLT and LayoutXLM on the first PDF page")
|
146 |
+
reset_btn = gr.Button(value="Clear")
|
147 |
with gr.Row():
|
148 |
+
output_messages = []
|
149 |
+
with gr.Column():
|
150 |
+
output_msg = gr.Textbox(label="LiLT output message")
|
151 |
+
output_messages.append(output_msg)
|
152 |
+
with gr.Column():
|
153 |
+
output_msg = gr.Textbox(label="LayoutXLM output message")
|
154 |
+
output_messages.append(output_msg)
|
155 |
with gr.Row():
|
156 |
fileboxes = []
|
157 |
+
with gr.Column():
|
158 |
+
file_path = gr.File(visible=True, label=f"LiLT image file")
|
159 |
+
fileboxes.append(file_path)
|
160 |
+
with gr.Column():
|
161 |
+
file_path = gr.File(visible=True, label=f"LayoutXLM image file")
|
162 |
fileboxes.append(file_path)
|
163 |
with gr.Row():
|
164 |
imgboxes = []
|
165 |
+
with gr.Column():
|
166 |
+
img = gr.Image(type="pil", label=f"Lilt Image")
|
167 |
+
imgboxes.append(img)
|
168 |
+
with gr.Column():
|
169 |
+
img = gr.Image(type="pil", label=f"LayoutXLM Image")
|
170 |
imgboxes.append(img)
|
171 |
with gr.Row():
|
172 |
csvboxes = []
|
173 |
+
with gr.Column():
|
174 |
+
csv = gr.File(visible=True, label=f"LiLT csv file at line level")
|
175 |
+
csvboxes.append(csv)
|
176 |
+
with gr.Column():
|
177 |
+
csv = gr.File(visible=True, label=f"LayoutXLM csv file at line level")
|
178 |
csvboxes.append(csv)
|
179 |
with gr.Row():
|
180 |
dfboxes = []
|
181 |
+
with gr.Column():
|
182 |
df = gr.Dataframe(
|
183 |
headers=["bounding boxes", "texts", "labels"],
|
184 |
datatype=["str", "str", "str"],
|
185 |
col_count=(3, "fixed"),
|
186 |
visible=True,
|
187 |
+
label=f"LiLT data",
|
188 |
+
type="pandas",
|
189 |
+
wrap=True
|
190 |
+
)
|
191 |
+
dfboxes.append(df)
|
192 |
+
with gr.Column():
|
193 |
+
df = gr.Dataframe(
|
194 |
+
headers=["bounding boxes", "texts", "labels"],
|
195 |
+
datatype=["str", "str", "str"],
|
196 |
+
col_count=(3, "fixed"),
|
197 |
+
visible=True,
|
198 |
+
label=f"LayoutXLM data",
|
199 |
type="pandas",
|
200 |
wrap=True
|
201 |
)
|
202 |
dfboxes.append(df)
|
203 |
|
204 |
+
outputboxes = output_messages + fileboxes + imgboxes + csvboxes + dfboxes
|
205 |
+
|
206 |
submit_btn.click(app_outputs, inputs=[pdf_file], outputs=outputboxes)
|
207 |
+
|
208 |
+
# https://github.com/gradio-app/gradio/pull/2044/files#diff-a91dd2749f68bb7d0099a0f4079a4fd2d10281e299e7b451cb1bb876a7c21975R91
|
209 |
reset_btn.click(
|
210 |
+
lambda: [pdf_file.update(value=None)] + [output_msg.update(value=None) for output_msg in output_messages] + [filebox.update(value=None) for filebox in fileboxes] + [imgbox.update(value=None) for imgbox in imgboxes] + [csvbox.update(value=None) for csvbox in csvboxes] + [dfbox.update(value=None) for dfbox in dfboxes],
|
211 |
inputs=[],
|
212 |
+
outputs=[pdf_file] + output_messages + fileboxes + imgboxes + csvboxes + dfboxes
|
213 |
+
)
|
214 |
|
215 |
gr.Examples(
|
216 |
[["files/example.pdf"]],
|