File size: 31,286 Bytes
08d0375 69136d7 08d0375 723d054 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 4e49717 08d0375 69136d7 08d0375 69136d7 08d0375 723d054 69136d7 08d0375 69136d7 08d0375 fd53ed7 08d0375 4e49717 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 4e49717 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 4e49717 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 4e49717 69136d7 08d0375 69136d7 08d0375 2e609f7 08d0375 2e609f7 08d0375 69136d7 08d0375 d02ac89 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 08d0375 69136d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 |
import os
import gradio as gr
import re
import string
import torch
from operator import itemgetter
import collections
import pypdf
from pypdf import PdfReader
from pypdf.errors import PdfReadError
import pdf2image
from pdf2image import convert_from_path
import langdetect
from langdetect import detect_langs
import pandas as pd
import numpy as np
import random
import tempfile
import itertools
from matplotlib import font_manager
from PIL import Image, ImageDraw, ImageFont
import cv2
# Tesseract
print(os.popen(f'cat /etc/debian_version').read())
print(os.popen(f'cat /etc/issue').read())
print(os.popen(f'apt search tesseract').read())
import pytesseract
## Key parameters
# categories colors
label2color = {
'Caption': 'brown',
'Footnote': 'orange',
'Formula': 'gray',
'List-item': 'yellow',
'Page-footer': 'red',
'Page-header': 'red',
'Picture': 'violet',
'Section-header': 'orange',
'Table': 'green',
'Text': 'blue',
'Title': 'pink'
}
# bounding boxes start and end of a sequence
cls_box = [0, 0, 0, 0]
sep_box = cls_box
# model
from transformers import AutoTokenizer, AutoModelForTokenClassification
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_id = "pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForTokenClassification.from_pretrained(model_id);
model.to(device);
# get labels
id2label = model.config.id2label
label2id = model.config.label2id
num_labels = len(id2label)
# (tokenization) The maximum length of a feature (sequence)
if str(384) in model_id:
max_length = 384
elif str(512) in model_id:
max_length = 512
else:
print("Error with max_length of chunks!")
# (tokenization) overlap
doc_stride = 128 # The authorized overlap between two part of the context when splitting it is needed.
# max PDF page images that will be displayed
max_imgboxes = 2
examples_dir = 'files/'
image_wo_content = examples_dir + "wo_content.png" # image without content
pdf_blank = examples_dir + "blank.pdf" # blank PDF
image_blank = examples_dir + "blank.png" # blank image
## get langdetect2Tesseract dictionary
t = "files/languages_tesseract.csv"
l = "files/languages_iso.csv"
df_t = pd.read_csv(t)
df_l = pd.read_csv(l)
langs_t = df_t["Language"].to_list()
langs_t = [lang_t.lower().strip().translate(str.maketrans('', '', string.punctuation)) for lang_t in langs_t]
langs_l = df_l["Language"].to_list()
langs_l = [lang_l.lower().strip().translate(str.maketrans('', '', string.punctuation)) for lang_l in langs_l]
langscode_t = df_t["LangCode"].to_list()
langscode_l = df_l["LangCode"].to_list()
Tesseract2langdetect, langdetect2Tesseract = dict(), dict()
for lang_t, langcode_t in zip(langs_t,langscode_t):
try:
if lang_t == "Chinese - Simplified".lower().strip().translate(str.maketrans('', '', string.punctuation)): lang_t = "chinese"
index = langs_l.index(lang_t)
langcode_l = langscode_l[index]
Tesseract2langdetect[langcode_t] = langcode_l
except:
continue
langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
## General
# get text and bounding boxes from an image
# https://stackoverflow.com/questions/61347755/how-can-i-get-line-coordinates-that-readed-by-tesseract
# https://medium.com/geekculture/tesseract-ocr-understanding-the-contents-of-documents-beyond-their-text-a98704b7c655
def get_data(results, factor, conf_min=0):
data = {}
for i in range(len(results['line_num'])):
level = results['level'][i]
block_num = results['block_num'][i]
par_num = results['par_num'][i]
line_num = results['line_num'][i]
top, left = results['top'][i], results['left'][i]
width, height = results['width'][i], results['height'][i]
conf = results['conf'][i]
text = results['text'][i]
if not (text == '' or text.isspace()):
if conf >= conf_min:
tup = (text, left, top, width, height)
if block_num in list(data.keys()):
if par_num in list(data[block_num].keys()):
if line_num in list(data[block_num][par_num].keys()):
data[block_num][par_num][line_num].append(tup)
else:
data[block_num][par_num][line_num] = [tup]
else:
data[block_num][par_num] = {}
data[block_num][par_num][line_num] = [tup]
else:
data[block_num] = {}
data[block_num][par_num] = {}
data[block_num][par_num][line_num] = [tup]
# get paragraphs dicionnary with list of lines
par_data = {}
par_idx = 1
for _, b in data.items():
for _, p in b.items():
line_data = {}
line_idx = 1
for _, l in p.items():
line_data[line_idx] = l
line_idx += 1
par_data[par_idx] = line_data
par_idx += 1
# get lines of texts, grouped by paragraph
lines = list()
row_indexes = list()
row_index = 0
for _,par in par_data.items():
count_lines = 0
for _,line in par.items():
if count_lines == 0: row_indexes.append(row_index)
line_text = ' '.join([item[0] for item in line])
lines.append(line_text)
count_lines += 1
row_index += 1
# lines.append("\n")
row_index += 1
# lines = lines[:-1]
# get paragraphes boxes (par_boxes)
# get lines boxes (line_boxes)
par_boxes = list()
par_idx = 1
line_boxes = list()
line_idx = 1
for _, par in par_data.items():
xmins, ymins, xmaxs, ymaxs = list(), list(), list(), list()
for _, line in par.items():
xmin, ymin = line[0][1], line[0][2]
xmax, ymax = (line[-1][1] + line[-1][3]), (line[-1][2] + line[-1][4])
line_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
xmins.append(xmin)
ymins.append(ymin)
xmaxs.append(xmax)
ymaxs.append(ymax)
line_idx += 1
xmin, ymin, xmax, ymax = min(xmins), min(ymins), max(xmaxs), max(ymaxs)
par_boxes.append([int(xmin/factor), int(ymin/factor), int(xmax/factor), int(ymax/factor)])
par_idx += 1
return lines, row_indexes, par_boxes, line_boxes #data, par_data #
# rescale image to get 300dpi
def set_image_dpi_resize(image):
"""
Rescaling image to 300dpi while resizing
:param image: An image
:return: A rescaled image
"""
length_x, width_y = image.size
factor = min(1, float(1024.0 / length_x))
size = int(factor * length_x), int(factor * width_y)
image_resize = image.resize(size, Image.Resampling.LANCZOS)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='1.png')
temp_filename = temp_file.name
image_resize.save(temp_filename, dpi=(300, 300))
return factor, temp_filename
# it is important that each bounding box should be in (upper left, lower right) format.
# source: https://github.com/NielsRogge/Transformers-Tutorials/issues/129
def upperleft_to_lowerright(bbox):
x0, y0, x1, y1 = tuple(bbox)
if bbox[2] < bbox[0]:
x0 = bbox[2]
x1 = bbox[0]
if bbox[3] < bbox[1]:
y0 = bbox[3]
y1 = bbox[1]
return [x0, y0, x1, y1]
# convert boundings boxes (left, top, width, height) format to (left, top, left+widght, top+height) format.
def convert_box(bbox):
x, y, w, h = tuple(bbox) # the row comes in (left, top, width, height) format
return [x, y, x+w, y+h] # we turn it into (left, top, left+widght, top+height) to get the actual box
# LiLT model gets 1000x10000 pixels images
def normalize_box(bbox, width, height):
return [
int(1000 * (bbox[0] / width)),
int(1000 * (bbox[1] / height)),
int(1000 * (bbox[2] / width)),
int(1000 * (bbox[3] / height)),
]
# LiLT model gets 1000x10000 pixels images
def denormalize_box(bbox, width, height):
return [
int(width * (bbox[0] / 1000)),
int(height * (bbox[1] / 1000)),
int(width* (bbox[2] / 1000)),
int(height * (bbox[3] / 1000)),
]
# get back original size
def original_box(box, original_width, original_height, coco_width, coco_height):
return [
int(original_width * (box[0] / coco_width)),
int(original_height * (box[1] / coco_height)),
int(original_width * (box[2] / coco_width)),
int(original_height* (box[3] / coco_height)),
]
def get_blocks(bboxes_block, categories, texts):
# get list of unique block boxes
bbox_block_dict, bboxes_block_list, bbox_block_prec = dict(), list(), list()
for count_block, bbox_block in enumerate(bboxes_block):
if bbox_block != bbox_block_prec:
bbox_block_indexes = [i for i, bbox in enumerate(bboxes_block) if bbox == bbox_block]
bbox_block_dict[count_block] = bbox_block_indexes
bboxes_block_list.append(bbox_block)
bbox_block_prec = bbox_block
# get list of categories and texts by unique block boxes
category_block_list, text_block_list = list(), list()
for bbox_block in bboxes_block_list:
count_block = bboxes_block.index(bbox_block)
bbox_block_indexes = bbox_block_dict[count_block]
category_block = np.array(categories, dtype=object)[bbox_block_indexes].tolist()[0]
category_block_list.append(category_block)
text_block = np.array(texts, dtype=object)[bbox_block_indexes].tolist()
text_block = [text.replace("\n","").strip() for text in text_block]
if id2label[category_block] == "Text" or id2label[category_block] == "Caption" or id2label[category_block] == "Footnote":
text_block = ' '.join(text_block)
else:
text_block = '\n'.join(text_block)
text_block_list.append(text_block)
return bboxes_block_list, category_block_list, text_block_list
# function to sort bounding boxes
def get_sorted_boxes(bboxes):
# sort by y from page top to bottom
sorted_bboxes = sorted(bboxes, key=itemgetter(1), reverse=False)
y_list = [bbox[1] for bbox in sorted_bboxes]
# sort by x from page left to right when boxes with same y
if len(list(set(y_list))) != len(y_list):
y_list_duplicates_indexes = dict()
y_list_duplicates = [item for item, count in collections.Counter(y_list).items() if count > 1]
for item in y_list_duplicates:
y_list_duplicates_indexes[item] = [i for i, e in enumerate(y_list) if e == item]
bbox_list_y_duplicates = sorted(np.array(sorted_bboxes, dtype=object)[y_list_duplicates_indexes[item]].tolist(), key=itemgetter(0), reverse=False)
np_array_bboxes = np.array(sorted_bboxes)
np_array_bboxes[y_list_duplicates_indexes[item]] = np.array(bbox_list_y_duplicates)
sorted_bboxes = np_array_bboxes.tolist()
return sorted_bboxes
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
def sort_data(bboxes, categories, texts):
sorted_bboxes = get_sorted_boxes(bboxes)
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes]
sorted_categories = np.array(categories, dtype=object)[sorted_bboxes_indexes].tolist()
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
return sorted_bboxes, sorted_categories, sorted_texts
# sort data from y = 0 to end of page (and after, x=0 to end of page when necessary)
def sort_data_wo_labels(bboxes, texts):
sorted_bboxes = get_sorted_boxes(bboxes)
sorted_bboxes_indexes = [bboxes.index(bbox) for bbox in sorted_bboxes]
sorted_texts = np.array(texts, dtype=object)[sorted_bboxes_indexes].tolist()
return sorted_bboxes, sorted_texts
## PDF processing
# get filename and images of PDF pages
def pdf_to_images(uploaded_pdf):
# Check if None object
if uploaded_pdf is None:
path_to_file = pdf_blank
filename = path_to_file.replace(examples_dir,"")
msg = "Invalid PDF file."
images = [Image.open(image_blank)]
else:
# path to the uploaded PDF
path_to_file = uploaded_pdf.name
filename = path_to_file.replace("/tmp/","")
try:
PdfReader(path_to_file)
except PdfReadError:
path_to_file = pdf_blank
filename = path_to_file.replace(examples_dir,"")
msg = "Invalid PDF file."
images = [Image.open(image_blank)]
else:
try:
images = convert_from_path(path_to_file, last_page=max_imgboxes)
num_imgs = len(images)
msg = f'The PDF "{filename}" was converted into {num_imgs} images.'
except:
msg = f'Error with the PDF "{filename}": it was not converted into images.'
images = [Image.open(image_wo_content)]
return filename, msg, images
# Extraction of image data (text and bounding boxes)
def extraction_data_from_image(images):
num_imgs = len(images)
if num_imgs > 0:
# https://pyimagesearch.com/2021/11/15/tesseract-page-segmentation-modes-psms-explained-how-to-improve-your-ocr-accuracy/
custom_config = r'--oem 3 --psm 3 -l eng' # default config PyTesseract: --oem 3 --psm 3 -l eng+deu+fra+jpn+por+spa+rus+hin+chi_sim
results, lines, row_indexes, par_boxes, line_boxes = dict(), dict(), dict(), dict(), dict()
images_ids_list, lines_list, par_boxes_list, line_boxes_list, images_list, page_no_list, num_pages_list = list(), list(), list(), list(), list(), list(), list()
try:
for i,image in enumerate(images):
# image preprocessing
# https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_thresholding/py_thresholding.html
img = image.copy()
factor, path_to_img = set_image_dpi_resize(img) # Rescaling to 300dpi
img = Image.open(path_to_img)
img = np.array(img, dtype='uint8') # convert PIL to cv2
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # gray scale image
ret,img = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
# OCR PyTesseract | get langs of page
txt = pytesseract.image_to_string(img, config=custom_config)
txt = txt.strip().lower()
txt = re.sub(r" +", " ", txt) # multiple space
txt = re.sub(r"(\n\s*)+\n+", "\n", txt) # multiple line
# txt = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
try:
langs = detect_langs(txt)
langs = [langdetect2Tesseract[langs[i].lang] for i in range(len(langs))]
langs_string = '+'.join(langs)
except:
langs_string = "eng"
langs_string += '+osd'
custom_config = f'--oem 3 --psm 3 -l {langs_string}' # default config PyTesseract: --oem 3 --psm 3
# OCR PyTesseract | get data
results[i] = pytesseract.image_to_data(img, config=custom_config, output_type=pytesseract.Output.DICT)
# results[i] = os.popen(f'tesseract {img_filepath} - {custom_config}').read()
lines[i], row_indexes[i], par_boxes[i], line_boxes[i] = get_data(results[i], factor, conf_min=0)
lines_list.append(lines[i])
par_boxes_list.append(par_boxes[i])
line_boxes_list.append(line_boxes[i])
images_ids_list.append(i)
images_list.append(images[i])
page_no_list.append(i)
num_pages_list.append(num_imgs)
except:
print(f"There was an error within the extraction of PDF text by the OCR!")
else:
from datasets import Dataset
dataset = Dataset.from_dict({"images_ids": images_ids_list, "images": images_list, "page_no": page_no_list, "num_pages": num_pages_list, "texts": lines_list, "bboxes_line": line_boxes_list})
# print(f"The text data was successfully extracted by the OCR!")
return dataset, lines, row_indexes, par_boxes, line_boxes
## Inference
def prepare_inference_features(example, cls_box = cls_box, sep_box = sep_box):
images_ids_list, chunks_ids_list, input_ids_list, attention_mask_list, bb_list = list(), list(), list(), list(), list()
# get batch
batch_images_ids = example["images_ids"]
batch_images = example["images"]
batch_bboxes_line = example["bboxes_line"]
batch_texts = example["texts"]
batch_images_size = [image.size for image in batch_images]
batch_width, batch_height = [image_size[0] for image_size in batch_images_size], [image_size[1] for image_size in batch_images_size]
# add a dimension if not a batch but only one image
if not isinstance(batch_images_ids, list):
batch_images_ids = [batch_images_ids]
batch_images = [batch_images]
batch_bboxes_line = [batch_bboxes_line]
batch_texts = [batch_texts]
batch_width, batch_height = [batch_width], [batch_height]
# process all images of the batch
for num_batch, (image_id, boxes, texts, width, height) in enumerate(zip(batch_images_ids, batch_bboxes_line, batch_texts, batch_width, batch_height)):
tokens_list = []
bboxes_list = []
# add a dimension if only on image
if not isinstance(texts, list):
texts, boxes = [texts], [boxes]
# convert boxes to original
normalize_bboxes_line = [normalize_box(upperleft_to_lowerright(box), width, height) for box in boxes]
# sort boxes with texts
# we want sorted lists from top to bottom of the image
boxes, texts = sort_data_wo_labels(normalize_bboxes_line, texts)
count = 0
for box, text in zip(boxes, texts):
tokens = tokenizer.tokenize(text)
num_tokens = len(tokens) # get number of tokens
tokens_list.extend(tokens)
bboxes_list.extend([box] * num_tokens) # number of boxes must be the same as the number of tokens
# use of return_overflowing_tokens=True / stride=doc_stride
# to get parts of image with overlap
# source: https://huggingface.co/course/chapter6/3b?fw=tf#handling-long-contexts
encodings = tokenizer(" ".join(texts),
truncation=True,
padding="max_length",
max_length=max_length,
stride=doc_stride,
return_overflowing_tokens=True,
return_offsets_mapping=True
)
otsm = encodings.pop("overflow_to_sample_mapping")
offset_mapping = encodings.pop("offset_mapping")
# Let's label those examples and get their boxes
sequence_length_prev = 0
for i, offsets in enumerate(offset_mapping):
# truncate tokens, boxes and labels based on length of chunk - 2 (special tokens <s> and </s>)
sequence_length = len(encodings.input_ids[i]) - 2
if i == 0: start = 0
else: start += sequence_length_prev - doc_stride
end = start + sequence_length
sequence_length_prev = sequence_length
# get tokens, boxes and labels of this image chunk
bb = [cls_box] + bboxes_list[start:end] + [sep_box]
# as the last chunk can have a length < max_length
# we must to add [tokenizer.pad_token] (tokens), [sep_box] (boxes) and [-100] (labels)
if len(bb) < max_length:
bb = bb + [sep_box] * (max_length - len(bb))
# append results
input_ids_list.append(encodings["input_ids"][i])
attention_mask_list.append(encodings["attention_mask"][i])
bb_list.append(bb)
images_ids_list.append(image_id)
chunks_ids_list.append(i)
return {
"images_ids": images_ids_list,
"chunk_ids": chunks_ids_list,
"input_ids": input_ids_list,
"attention_mask": attention_mask_list,
"normalized_bboxes": bb_list,
}
from torch.utils.data import Dataset
class CustomDataset(Dataset):
def __init__(self, dataset, tokenizer):
self.dataset = dataset
self.tokenizer = tokenizer
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
# get item
example = self.dataset[idx]
encoding = dict()
encoding["images_ids"] = example["images_ids"]
encoding["chunk_ids"] = example["chunk_ids"]
encoding["input_ids"] = example["input_ids"]
encoding["attention_mask"] = example["attention_mask"]
encoding["bbox"] = example["normalized_bboxes"]
return encoding
import torch.nn.functional as F
# get predictions at token level
def predictions_token_level(images, custom_encoded_dataset):
num_imgs = len(images)
if num_imgs > 0:
chunk_ids, input_ids, bboxes, outputs, token_predictions = dict(), dict(), dict(), dict(), dict()
images_ids_list = list()
for i,encoding in enumerate(custom_encoded_dataset):
# get custom encoded data
image_id = encoding['images_ids']
chunk_id = encoding['chunk_ids']
input_id = torch.tensor(encoding['input_ids'])[None]
attention_mask = torch.tensor(encoding['attention_mask'])[None]
bbox = torch.tensor(encoding['bbox'])[None]
# save data in dictionnaries
if image_id not in images_ids_list: images_ids_list.append(image_id)
if image_id in chunk_ids: chunk_ids[image_id].append(chunk_id)
else: chunk_ids[image_id] = [chunk_id]
if image_id in input_ids: input_ids[image_id].append(input_id)
else: input_ids[image_id] = [input_id]
if image_id in bboxes: bboxes[image_id].append(bbox)
else: bboxes[image_id] = [bbox]
# get prediction with forward pass
with torch.no_grad():
output = model(
input_ids=input_id,
attention_mask=attention_mask,
bbox=bbox
)
# save probabilities of predictions in dictionnary
if image_id in outputs: outputs[image_id].append(F.softmax(output.logits.squeeze(), dim=-1))
else: outputs[image_id] = [F.softmax(output.logits.squeeze(), dim=-1)]
return outputs, images_ids_list, chunk_ids, input_ids, bboxes
else:
print("An error occurred while getting predictions!")
from functools import reduce
# Get predictions (line level)
def predictions_line_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes):
ten_probs_dict, ten_input_ids_dict, ten_bboxes_dict = dict(), dict(), dict()
bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = dict(), dict(), dict(), dict()
if len(images_ids_list) > 0:
for i, image_id in enumerate(images_ids_list):
# get image information
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
image = images_list[0]
width, height = image.size
# get data
chunk_ids_list = chunk_ids[image_id]
outputs_list = outputs[image_id]
input_ids_list = input_ids[image_id]
bboxes_list = bboxes[image_id]
# create zeros tensors
ten_probs = torch.zeros((outputs_list[0].shape[0] - 2)*len(outputs_list), outputs_list[0].shape[1])
ten_input_ids = torch.ones(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list)), dtype =int)
ten_bboxes = torch.zeros(size=(1, (outputs_list[0].shape[0] - 2)*len(outputs_list), 4), dtype =int)
if len(outputs_list) > 1:
for num_output, (output, input_id, bbox) in enumerate(zip(outputs_list, input_ids_list, bboxes_list)):
start = num_output*(max_length - 2) - max(0,num_output)*doc_stride
end = start + (max_length - 2)
if num_output == 0:
ten_probs[start:end,:] += output[1:-1]
ten_input_ids[:,start:end] = input_id[:,1:-1]
ten_bboxes[:,start:end,:] = bbox[:,1:-1,:]
else:
ten_probs[start:start + doc_stride,:] += output[1:1 + doc_stride]
ten_probs[start:start + doc_stride,:] = ten_probs[start:start + doc_stride,:] * 0.5
ten_probs[start + doc_stride:end,:] += output[1 + doc_stride:-1]
ten_input_ids[:,start:start + doc_stride] = input_id[:,1:1 + doc_stride]
ten_input_ids[:,start + doc_stride:end] = input_id[:,1 + doc_stride:-1]
ten_bboxes[:,start:start + doc_stride,:] = bbox[:,1:1 + doc_stride,:]
ten_bboxes[:,start + doc_stride:end,:] = bbox[:,1 + doc_stride:-1,:]
else:
ten_probs += outputs_list[0][1:-1]
ten_input_ids = input_ids_list[0][:,1:-1]
ten_bboxes = bboxes_list[0][:,1:-1]
ten_probs_list, ten_input_ids_list, ten_bboxes_list = ten_probs.tolist(), ten_input_ids.tolist()[0], ten_bboxes.tolist()[0]
bboxes_list = list()
input_ids_dict, probs_dict = dict(), dict()
bbox_prev = [-100, -100, -100, -100]
for probs, input_id, bbox in zip(ten_probs_list, ten_input_ids_list, ten_bboxes_list):
bbox = denormalize_box(bbox, width, height)
if bbox != bbox_prev and bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]:
bboxes_list.append(bbox)
input_ids_dict[str(bbox)] = [input_id]
probs_dict[str(bbox)] = [probs]
elif bbox != cls_box and bbox != sep_box and bbox[0] != bbox[2] and bbox[1] != bbox[3]:
input_ids_dict[str(bbox)].append(input_id)
probs_dict[str(bbox)].append(probs)
bbox_prev = bbox
probs_bbox = dict()
for i,bbox in enumerate(bboxes_list):
probs = probs_dict[str(bbox)]
probs = np.array(probs).T.tolist()
probs_label = list()
for probs_list in probs:
prob_label = reduce(lambda x, y: x*y, probs_list)
prob_label = prob_label**(1./(len(probs_list))) # normalization
probs_label.append(prob_label)
max_value = max(probs_label)
max_index = probs_label.index(max_value)
probs_bbox[str(bbox)] = max_index
bboxes_list_dict[image_id] = bboxes_list
input_ids_dict_dict[image_id] = input_ids_dict
probs_dict_dict[image_id] = probs_bbox
df[image_id] = pd.DataFrame()
df[image_id]["bboxes"] = bboxes_list
df[image_id]["texts"] = [tokenizer.decode(input_ids_dict[str(bbox)]) for bbox in bboxes_list]
df[image_id]["labels"] = [id2label[probs_bbox[str(bbox)]] for bbox in bboxes_list]
return probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df
else:
print("An error occurred while getting predictions!")
# Get labeled images with lines bounding boxes
def get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict):
labeled_images = list()
for i, image_id in enumerate(images_ids_list):
# get image
images_list = dataset.filter(lambda example: example["images_ids"] == image_id)["images"]
image = images_list[0]
width, height = image.size
# get predicted boxes and labels
bboxes_list = bboxes_list_dict[image_id]
probs_bbox = probs_dict_dict[image_id]
draw = ImageDraw.Draw(image)
# https://stackoverflow.com/questions/66274858/choosing-a-pil-imagefont-by-font-name-rather-than-filename-and-cross-platform-f
font = font_manager.FontProperties(family='sans-serif', weight='bold')
font_file = font_manager.findfont(font)
font_size = 30
font = ImageFont.truetype(font_file, font_size)
for bbox in bboxes_list:
predicted_label = id2label[probs_bbox[str(bbox)]]
draw.rectangle(bbox, outline=label2color[predicted_label])
draw.text((bbox[0] + 10, bbox[1] - font_size), text=predicted_label, fill=label2color[predicted_label], font=font)
labeled_images.append(image)
return labeled_images
# get data of encoded chunk
def get_encoded_chunk_inference(index_chunk=None):
# get datasets
example = dataset
encoded_example = encoded_dataset
# get randomly a document in dataset
if index_chunk == None: index_chunk = random.randint(0, len(encoded_example)-1)
encoded_example = encoded_example[index_chunk]
encoded_image_ids = encoded_example["images_ids"]
# get the image
example = example.filter(lambda example: example["images_ids"] == encoded_image_ids)[0]
image = example["images"] # original image
width, height = image.size
page_no = example["page_no"]
num_pages = example["num_pages"]
# get boxes, texts, categories
bboxes, input_ids = encoded_example["normalized_bboxes"][1:-1], encoded_example["input_ids"][1:-1]
bboxes = [denormalize_box(bbox, width, height) for bbox in bboxes]
num_tokens = len(input_ids) + 2
# get unique bboxes and corresponding labels
bboxes_list, input_ids_list = list(), list()
input_ids_dict = dict()
bbox_prev = [-100, -100, -100, -100]
for i, (bbox, input_id) in enumerate(zip(bboxes, input_ids)):
if bbox != bbox_prev:
bboxes_list.append(bbox)
input_ids_dict[str(bbox)] = [input_id]
else:
input_ids_dict[str(bbox)].append(input_id)
# start_indexes_list.append(i)
bbox_prev = bbox
# do not keep "</s><pad><pad>..."
if input_ids_dict[str(bboxes_list[-1])][0] == (tokenizer.convert_tokens_to_ids('</s>')):
del input_ids_dict[str(bboxes_list[-1])]
bboxes_list = bboxes_list[:-1]
# get texts by line
input_ids_list = input_ids_dict.values()
texts_list = [tokenizer.decode(input_ids) for input_ids in input_ids_list]
# display DataFrame
df = pd.DataFrame({"texts": texts_list, "input_ids": input_ids_list, "bboxes": bboxes_list})
return image, df, num_tokens, page_no, num_pages
# display chunk of PDF image and its data
def display_chunk_lines_inference(index_chunk=None):
# get image and image data
image, df, num_tokens, page_no, num_pages = get_encoded_chunk_inference(index_chunk=index_chunk)
# get data from dataframe
input_ids = df["input_ids"]
texts = df["texts"]
bboxes = df["bboxes"]
print(f'Chunk ({num_tokens} tokens) of the PDF (page: {page_no+1} / {num_pages})\n')
# display image with bounding boxes
print(">> PDF image with bounding boxes of lines\n")
draw = ImageDraw.Draw(image)
labels = list()
for box, text in zip(bboxes, texts):
color = "red"
draw.rectangle(box, outline=color)
# resize image to original
width, height = image.size
image = image.resize((int(0.5*width), int(0.5*height)))
# convert to cv and display
img = np.array(image, dtype='uint8') # PIL to cv2
cv2_imshow(img)
cv2.waitKey(0)
# display image dataframe
print("\n>> Dataframe of annotated lines\n")
cols = ["texts", "bboxes"]
df = df[cols]
display(df) |