pierreguillou commited on
Commit
b565cf9
·
1 Parent(s): fde868d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -0
app.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import re
4
+ import string
5
+
6
+ from operator import itemgetter
7
+ import collections
8
+
9
+ import pypdf
10
+ from pypdf import PdfReader
11
+ from pypdf.errors import PdfReadError
12
+
13
+ import pdf2image
14
+ from pdf2image import convert_from_path
15
+ import langdetect
16
+ from langdetect import detect_langs
17
+
18
+ import pandas as pd
19
+ import numpy as np
20
+ import random
21
+ import tempfile
22
+ import itertools
23
+
24
+ from matplotlib import font_manager
25
+ from PIL import Image, ImageDraw, ImageFont
26
+ import cv2
27
+
28
+ ## files
29
+
30
+ import sys
31
+ sys.path.insert(0, 'files/')
32
+
33
+ import functions
34
+ from functions import *
35
+
36
+ # update pip
37
+ os.system('python -m pip install --upgrade pip')
38
+
39
+ # APP outputs
40
+ def app_outputs(uploaded_pdf):
41
+ filename, msg, images = pdf_to_images(uploaded_pdf)
42
+ num_images = len(images)
43
+
44
+ if not msg.startswith("Error with the PDF"):
45
+
46
+ # Extraction of image data (text and bounding boxes)
47
+ dataset, lines, row_indexes, par_boxes, line_boxes = extraction_data_from_image(images)
48
+ # prepare our data in the format of the model
49
+ encoded_dataset = dataset.map(prepare_inference_features, batched=True, batch_size=64, remove_columns=dataset.column_names)
50
+ custom_encoded_dataset = CustomDataset(encoded_dataset, tokenizer)
51
+ # Get predictions (token level)
52
+ outputs, images_ids_list, chunk_ids, input_ids, bboxes = predictions_token_level(images, custom_encoded_dataset)
53
+ # Get predictions (line level)
54
+ probs_bbox, bboxes_list_dict, input_ids_dict_dict, probs_dict_dict, df = predictions_line_level(dataset, outputs, images_ids_list, chunk_ids, input_ids, bboxes)
55
+ # Get labeled images with lines bounding boxes
56
+ images = get_labeled_images(dataset, images_ids_list, bboxes_list_dict, probs_dict_dict)
57
+
58
+ img_files = list()
59
+ # get image of PDF without bounding boxes
60
+ for i in range(num_images):
61
+ if filename != "files/blank.png": img_file = f"img_{i}_" + filename.replace(".pdf", ".png")
62
+ else: img_file = filename.replace(".pdf", ".png")
63
+ images[i].save(img_file)
64
+ img_files.append(img_file)
65
+
66
+ if num_images < max_imgboxes:
67
+ img_files += [image_blank]*(max_imgboxes - num_images)
68
+ images += [Image.open(image_blank)]*(max_imgboxes - num_images)
69
+ for count in range(max_imgboxes - num_images):
70
+ df[num_images + count] = pd.DataFrame()
71
+ else:
72
+ img_files = img_files[:max_imgboxes]
73
+ images = images[:max_imgboxes]
74
+ df = dict(itertools.islice(df.items(), max_imgboxes))
75
+
76
+ # save
77
+ csv_files = list()
78
+ for i in range(max_imgboxes):
79
+ csv_file = f"csv_{i}_" + filename.replace(".pdf", ".csv")
80
+ csv_files.append(gr.File.update(value=csv_file, visible=True))
81
+ df[i].to_csv(csv_file, encoding="utf-8", index=False)
82
+
83
+ else:
84
+ img_files, images, csv_files = [""]*3,[""]*3,[""]*3
85
+ img_files[0], img_files[1], img_files[2] = image_blank, image_blank, image_blank
86
+ images[0], images[1], images[2] = Image.open(image_blank), Image.open(image_blank), Image.open(image_blank)
87
+ csv_file = "csv_wo_content.csv"
88
+ csv_files[0], csv_files[1], csv_files[2] = gr.File.update(value=csv_file, visible=True), gr.File.update(value=csv_file, visible=True), gr.File.update(value=csv_file, visible=True)
89
+ df, df_empty = dict(), pd.DataFrame()
90
+ df[0], df[1], df[2] = df_empty.to_csv(csv_file, encoding="utf-8", index=False), df_empty.to_csv(csv_file, encoding="utf-8", index=False), df_empty.to_csv(csv_file, encoding="utf-8", index=False)
91
+
92
+ return msg, img_files[0], img_files[1], img_files[2], images[0], images[1], images[2], csv_files[0], csv_files[1], csv_files[2], df[0], df[1], df[2]
93
+
94
+ # gradio APP
95
+ with gr.Blocks(title="Inference APP for Document Understanding at line level (v1)", css=".gradio-container") as demo:
96
+ gr.HTML("""
97
+ <div style="font-family:'Times New Roman', 'Serif'; font-size:26pt; font-weight:bold; text-align:center;"><h1>Inference APP for Document Understanding at line level (v1)</h1></div>
98
+ <div style="margin-top: 40px"><p>(02/12/2023) This Inference APP uses the <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/pierreguillou/lilt-xlm-roberta-base-finetuned-with-DocLayNet-base-at-linelevel-ml384" target="_blank">model LiLT base combined with XLM-RoBERTa base and finetuned on the dataset DocLayNet base</a> at line level (chunk size of 384 tokens).</p></div>
99
+ <div><p><a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://arxiv.org/abs/2202.13669" target="_blank">LiLT (Language-Independent Layout Transformer)</a> is a Document Understanding model that uses both layout and text in order to detect labels of bounding boxes. Combined with the model <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/xlm-roberta-base" target="_blank">XML-RoBERTa base</a>, this finetuned model has the capacity to understand any language. Finetuned on the dataset <a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://huggingface.co/datasets/pierreguillou/DocLayNet-base" target="_blank">DocLayNet base</a>, it can classifly any bounding box (and its OCR text) to 11 labels (Caption, Footnote, Formula, List-item, Page-footer, Page-header, Picture, Section-header, Table, Text, Title).</p></div>
100
+ <div><p>It relies on an external OCR engine to get words and bounding boxes from the document image. Thus, let's run in this APP an OCR engine ourselves (<a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/madmaze/pytesseract#python-tesseract" target="_blank">PyTesseract</a>) as we'll need to do it in real life to get the bounding boxes, then run LiLT (already fine-tuned on the dataset DocLayNet base at line level) on the individual tokens and then, visualize the result at line level!</p></div>
101
+ <div><p>From any PDF (of any language), it allows to get all pages with bounding boxes labeled at line level and the associated dataframes with labeled data (bounding boxes, texts, labels).</p></div>
102
+ <div><p>To avoid running this APP for too long, <b>only the first 3 pages are processed by this APP</b>. If you want to update this limit, you can either clone this APP and change the value of the parameter <code>max_imgboxes</code>, or run the corresponding notebook "<a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://github.com/piegu/language-models/blob/master/inference_on_LiLT_model_finetuned_on_DocLayNet_base_in_any_language_at_levellines_ml384.ipynb" target="_blank">Document AI | Inference at line level with a Document Understanding model (LiLT fine-tuned on DocLayNet dataset)</a>" which does not have this limit.</p></div>
103
+ <div style="margin-top: 20px"><p>More information about the DocLayNet datasets, the finetuning of the model and this APP in the following blog posts:</p>
104
+ <ul><li><a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-document-understanding-model-at-line-level-with-lilt-tesseract-and-doclaynet-dataset-347107a643b8" target="_blank">(02/10/2023) Document AI | Document Understanding model at line level with LiLT, Tesseract and DocLayNet dataset</a></li><li><a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-doclaynet-image-viewer-app-3ac54c19956" target="_blank"> (01/31/2023) Document AI | DocLayNet image viewer APP</a></li><li><a style="text-decoration: none; border-bottom: #64b5f6 0.125em solid; color: #64b5f6" href="https://medium.com/@pierre_guillou/document-ai-processing-of-doclaynet-dataset-to-be-used-by-layout-models-of-the-hugging-face-hub-308d8bd81cdb" target="_blank">(01/27/2023) Document AI | Processing of DocLayNet dataset to be used by layout models of the Hugging Face hub (finetuning, inference)</a></li></ul></div>
105
+ """)
106
+ with gr.Row():
107
+ pdf_file = gr.File(label="PDF")
108
+ with gr.Row():
109
+ submit_btn = gr.Button(f"Display first {max_imgboxes} labeled PDF pages")
110
+ reset_btn = gr.Button(value="Clear")
111
+ with gr.Row():
112
+ output_msg = gr.Textbox(label="Output message")
113
+ with gr.Row():
114
+ fileboxes = []
115
+ for num_page in range(max_imgboxes):
116
+ file_path = gr.File(visible=True, label=f"Image file of the PDF page n°{num_page}")
117
+ fileboxes.append(file_path)
118
+ with gr.Row():
119
+ imgboxes = []
120
+ for num_page in range(max_imgboxes):
121
+ img = gr.Image(type="pil", label=f"Image of the PDF page n°{num_page}")
122
+ imgboxes.append(img)
123
+ with gr.Row():
124
+ csvboxes = []
125
+ for num_page in range(max_imgboxes):
126
+ csv = gr.File(visible=True, label=f"CSV file at line level (page {num_page})")
127
+ csvboxes.append(csv)
128
+ with gr.Row():
129
+ dfboxes = []
130
+ for num_page in range(max_imgboxes):
131
+ df = gr.Dataframe(
132
+ headers=["bounding boxes", "texts", "labels"],
133
+ datatype=["str", "str", "str"],
134
+ col_count=(3, "fixed"),
135
+ visible=True,
136
+ label=f"Data of page {num_page}",
137
+ type="pandas",
138
+ wrap=True
139
+ )
140
+ dfboxes.append(df)
141
+
142
+ outputboxes = [output_msg] + fileboxes + imgboxes + csvboxes + dfboxes
143
+ submit_btn.click(app_outputs, inputs=[pdf_file], outputs=outputboxes)
144
+ reset_btn.click(
145
+ lambda: [pdf_file.update(value=None), output_msg.update(value=None)] + [filebox.update(value=None) for filebox in fileboxes] + [imgbox.update(value=None) for imgbox in imgboxes] + [csvbox.update(value=None) for csvbox in csvboxes] + [dfbox.update(value=None) for dfbox in dfboxes],
146
+ inputs=[],
147
+ outputs=[pdf_file, output_msg] + fileboxes + imgboxes + csvboxes + dfboxes,
148
+ )
149
+
150
+ gr.Examples(
151
+ [["files/example.pdf"]],
152
+ [pdf_file],
153
+ outputboxes,
154
+ fn=app_outputs,
155
+ cache_examples=True,
156
+ )
157
+
158
+ demo.launch(debug=True)