pierreguillou
commited on
Commit
•
9c8291e
1
Parent(s):
f49e93c
Update files/functions.py
Browse files- files/functions.py +20 -20
files/functions.py
CHANGED
@@ -50,26 +50,6 @@ print(os.popen(f'cat /etc/issue').read())
|
|
50 |
print(os.popen(f'apt search tesseract').read())
|
51 |
import pytesseract
|
52 |
|
53 |
-
## model / feature extractor / tokenizer
|
54 |
-
|
55 |
-
from transformers import LayoutLMv2ForTokenClassification # LayoutXLMTokenizerFast,
|
56 |
-
|
57 |
-
import torch
|
58 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
59 |
-
|
60 |
-
# model
|
61 |
-
# tokenizer = LayoutXLMTokenizerFast.from_pretrained(model_id)
|
62 |
-
model = LayoutLMv2ForTokenClassification.from_pretrained(model_id);
|
63 |
-
model.to(device);
|
64 |
-
|
65 |
-
# feature extractor
|
66 |
-
from transformers import LayoutLMv2FeatureExtractor
|
67 |
-
feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False)
|
68 |
-
|
69 |
-
# tokenizer
|
70 |
-
from transformers import AutoTokenizer
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
72 |
-
|
73 |
## Key parameters
|
74 |
|
75 |
# categories colors
|
@@ -155,6 +135,26 @@ for lang_t, langcode_t in zip(langs_t,langscode_t):
|
|
155 |
|
156 |
langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
|
157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
## General
|
159 |
|
160 |
# get text and bounding boxes from an image
|
|
|
50 |
print(os.popen(f'apt search tesseract').read())
|
51 |
import pytesseract
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
## Key parameters
|
54 |
|
55 |
# categories colors
|
|
|
135 |
|
136 |
langdetect2Tesseract = {v:k for k,v in Tesseract2langdetect.items()}
|
137 |
|
138 |
+
## model / feature extractor / tokenizer
|
139 |
+
|
140 |
+
from transformers import LayoutLMv2ForTokenClassification # LayoutXLMTokenizerFast,
|
141 |
+
|
142 |
+
import torch
|
143 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
144 |
+
|
145 |
+
# model
|
146 |
+
# tokenizer = LayoutXLMTokenizerFast.from_pretrained(model_id)
|
147 |
+
model = LayoutLMv2ForTokenClassification.from_pretrained(model_id);
|
148 |
+
model.to(device);
|
149 |
+
|
150 |
+
# feature extractor
|
151 |
+
from transformers import LayoutLMv2FeatureExtractor
|
152 |
+
feature_extractor = LayoutLMv2FeatureExtractor(apply_ocr=False)
|
153 |
+
|
154 |
+
# tokenizer
|
155 |
+
from transformers import AutoTokenizer
|
156 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
157 |
+
|
158 |
## General
|
159 |
|
160 |
# get text and bounding boxes from an image
|