File size: 6,234 Bytes
40a6f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import gradio as gr
import os
import shutil
import fitz
from PIL import Image
import numpy as np
import cv2
import pytesseract
from pytesseract import Output
import zipfile
from pdf2image import convert_from_path

# [Keep all the helper functions from the original code]
def convert_to_rgb(image_path):
    img = Image.open(image_path)
    rgb_img = img.convert("RGB")
    return rgb_img

def preprocess_image(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    _, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    denoised = cv2.fastNlMeansDenoising(binary, None, 30, 7, 21)
    resized = cv2.resize(denoised, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC)
    return resized

def extract_vertical_blocks(image):
    image_np = np.array(image)
    data = pytesseract.image_to_data(image_np, lang='fra', output_type=Output.DICT)

    blocks = []
    current_block = ""
    current_block_coords = [float('inf'), float('inf'), 0, 0]
    last_bottom = -1
    line_height = 0

    for i in range(len(data['text'])):
        if int(data['conf'][i]) > 0:
            text = data['text'][i]
            x, y, w, h = data['left'][i], data['top'][i], data['width'][i], data['height'][i]

            if line_height == 0:
                line_height = h * 1.2

            if y > last_bottom + line_height:
                if current_block:
                    blocks.append({
                        "text": current_block.strip(),
                        "coords": current_block_coords
                    })
                    current_block = ""
                    current_block_coords = [float('inf'), float('inf'), 0, 0]

            current_block += text + " "
            current_block_coords[0] = min(current_block_coords[0], x)
            current_block_coords[1] = min(current_block_coords[1], y)
            current_block_coords[2] = max(current_block_coords[2], x + w)
            current_block_coords[3] = max(current_block_coords[3], y + h)

            last_bottom = y + h

    if current_block:
        blocks.append({
            "text": current_block.strip(),
            "coords": current_block_coords
        })

    return blocks

def draw_blocks_on_image(image_path, blocks, output_path):
    image = cv2.imread(image_path)
    for block in blocks:
        coords = block['coords']
        cv2.rectangle(image, (coords[0], coords[1]), (coords[2], coords[3]), (0, 0, 255), 2)
    cv2.imwrite(output_path, image)
    return output_path

def process_image(image, output_folder, page_number):
    image = convert_to_rgb(image)
    blocks = extract_vertical_blocks(image)
    base_name = f'page_{page_number + 1}.png'
    image_path = os.path.join(output_folder, base_name)
    image.save(image_path)
    annotated_image_path = os.path.join(output_folder, f'annotated_{base_name}')
    annotated_image_path = draw_blocks_on_image(image_path, blocks, annotated_image_path)
    return blocks, annotated_image_path

def save_extracted_text(blocks, page_number, output_folder):
    text_file_path = os.path.join(output_folder, 'extracted_text.txt')
    with open(text_file_path, 'a', encoding='utf-8') as f:
        f.write(f"[PAGE {page_number}]\n")
        for block in blocks:
            f.write(block['text'] + "\n")
        f.write(f"[FIN DE PAGE {page_number}]\n\n")
    return text_file_path

# Modified process_pdf function with better temp file handling
def process_pdf(pdf_file):
    # Create unique temporary working directory
    temp_dir = os.path.join(os.getcwd(), "temp_processing")
    output_dir = os.path.join(temp_dir, 'output_images')

    # Clean up any existing temp directories
    if os.path.exists(temp_dir):
        shutil.rmtree(temp_dir)

    os.makedirs(output_dir, exist_ok=True)

    try:
        # Convert PDF to images
        images = convert_from_path(pdf_file.name)

        # Process each image
        annotated_images = []
        for i, img in enumerate(images):
            # Save temporary image
            temp_img_path = os.path.join(temp_dir, f'temp_page_{i}.png')
            img.save(temp_img_path)

            # Process the image
            blocks, annotated_image_path = process_image(temp_img_path, output_dir, i)
            annotated_images.append(annotated_image_path)
            save_extracted_text(blocks, i + 1, output_dir)

        # Create ZIP file of annotated images
        zip_path = os.path.join(temp_dir, "annotated_images.zip")
        with zipfile.ZipFile(zip_path, 'w') as zipf:
            for img_path in annotated_images:
                zipf.write(img_path, os.path.basename(img_path))

        # Get the text file
        text_file_path = os.path.join(output_dir, 'extracted_text.txt')

        # Read the files into memory before cleanup
        with open(text_file_path, 'rb') as f:
            text_content = f.read()
        with open(zip_path, 'rb') as f:
            zip_content = f.read()

        return (text_file_path, zip_path)

    except Exception as e:
        raise gr.Error(f"Error processing PDF: {str(e)}")

    finally:
        # Clean up will be handled by Hugging Face Spaces
        pass

# Create Gradio interface with theme and better styling
css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
.gr-button {
    color: white;
    border-radius: 8px;
    background: linear-gradient(45deg, #7928CA, #FF0080);
    border: none;
}
"""

# Create Gradio interface
demo = gr.Interface(
    fn=process_pdf,
    inputs=[
        gr.File(
            label="Upload PDF Document",
            file_types=[".pdf"],
            type="filepath"
        )
    ],
    outputs=[
        gr.File(label="Extracted Text (TXT)"),
        gr.File(label="Annotated Images (ZIP)")
    ],
    title="PDF Text Extraction and Annotation",
    description="""
    Upload a PDF document to:
    1. Extract text content
    2. Get annotated images showing detected text blocks

    Supports multiple pages and French language text.
    """,
    article="Created by [Your Name] - [Your GitHub/Profile Link]",
    css=css,
    examples=[],  # Add example PDFs if you have any
    cache_examples=False,
    theme=gr.themes.Soft()
)

# Launch the app
if __name__ == "__main__":
    demo.launch()