File size: 5,750 Bytes
2a9234c
5c80958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ef1bb
5c80958
53ef1bb
5c80958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9a62da
5c80958
 
 
53ef1bb
5c80958
 
 
 
 
 
 
 
53ef1bb
5c80958
53ef1bb
 
5c80958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a9234c
 
5c80958
2a9234c
5c80958
 
 
 
 
 
 
 
 
2a9234c
5c80958
 
2a9234c
5c80958
 
 
2a9234c
 
 
c7757d0
 
5c80958
 
 
53ef1bb
5c80958
 
 
53ef1bb
5c80958
 
 
 
c7757d0
 
 
 
 
 
 
 
 
08bc749
c7757d0
5c80958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53ef1bb
 
5c80958
 
 
 
 
 
 
 
 
53ef1bb
5c80958
 
 
 
 
 
 
 
 
 
 
53ef1bb
5c80958
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""PIVOT Demo."""

import gradio as gr
import numpy as np
from vip_runner import vip_runner
from vlms import GPT4V

# Adjust radius of annotations based on size of the image
radius_per_pixel = 0.05


def run_vip(
    im,
    query,
    n_samples_init,
    n_samples_opt,
    n_iters,
    n_parallel_trials,
    openai_api_key,
    progress=gr.Progress(track_tqdm=False),
):

  if not openai_api_key:
    return [], 'Must provide OpenAI API Key'
  if im is None:
    return [], 'Must specify image'
  if not query:
    return [], 'Must specify description'

  img_size = np.min(im.shape[:2])
  print(int(img_size * radius_per_pixel))
  # add some action spec
  style = {
      'num_samples': 12,
      'circle_alpha': 0.6,
      'alpha': 0.8,
      'arrow_alpha': 0.0,
      'radius': int(img_size * radius_per_pixel),
      'thickness': 2,
      'fontsize': int(img_size * radius_per_pixel),
      'rgb_scale': 255,
      'focal_offset': 1,  # camera distance / std of action in z
  }

  action_spec = {
      'loc': [0, 0, 0],
      'scale': [0.0, 100, 100],
      'min_scale': [0.0, 30, 30],
      'min': [0, -300.0, -300],
      'max': [0, 300, 300],
      'action_to_coord': 250,
      'robot': None,
  }

  vlm = GPT4V(openai_api_key=openai_api_key)
  vip_gen = vip_runner(
      vlm,
      im,
      query,
      style,
      action_spec,
      n_samples_init=n_samples_init,
      n_samples_opt=n_samples_opt,
      n_iters=n_iters,
      n_parallel_trials=n_parallel_trials,
  )
  for rst in vip_gen:
    yield rst 


examples = [
    {
        'im_path': 'ims/aloha.png',
        'desc': 'a point between the fork and the cup',
    },
    {
        'im_path': 'ims/robot.png',
        'desc': 'the toy in the middle of the table',
    },
    {
        'im_path': 'ims/parking.jpg',
        'desc': 'a place to park if I am handicapped',
    },
    {
        'im_path': 'ims/tools.png',
        'desc': 'what should I use pull a nail'
    },
]


with gr.Blocks() as demo:
  gr.Markdown("""
# PIVOT: Prompting with Iterative Visual Optimization
The demo below showcases a version of the PIVOT algorithm, which uses iterative visual prompts to optimize and guide the reasoning of Vision-Langauge-Models (VLMs).
Given an image and a description of an object or region, 
PIVOT iteratively searches for the point in the image that best corresponds to the description.
This is done through visual prompting, where instead of reasoning with text, the VLM reasons over images annotated with sampled points,
in order to pick the best points.
In each iteration, we take the points previously selected by the VLM, resample new points around the their mean, and repeat the process.

To get started, you can use the provided example image and query pairs, or 
upload your own images.
This demo uses GPT-4V, so it requires an OpenAI API key.

Hyperparameters to set:
* N Samples for Initialization - how many initial points are sampled for the first PIVOT iteration.
* N Samples for Optimiazation - how many points are sampled for subsequent iterations.
* N Iterations - how many optimization iterations to perform.
* N Ensemble Recursions - how many ensembles for recursive PIVOT.

Note that each iteration takes about ~10s, and each additional ensemble adds a multiple number of N Iterations.

After PIVOT finishes, the image gallery below will visualize PIVOT results throughout all the iterations.
There are two images for each iteration - the first one shows all the sampled points, and the second one shows which one PIVOT picked.
The Info textbox will show the final selected pixel coordinate that PIVOT converged to.

**To use the example images, right click on the image -> copy image, then click the clipboard icon in the Input Image box.**
""".strip())

  gr.Markdown(
      '## Example Images and Queries\n Drag images into the image box below (Try safari on Mac if dragging does not work)'
  )
  with gr.Row(equal_height=True):
    for example in examples:
      gr.Image(value=example['im_path'], type='numpy', label=example['desc'])

  gr.Markdown('## New Query')
  with gr.Row():
    with gr.Column():
      inp_im = gr.Image(
          label='Input Image',
          type='numpy',
          show_label=True,
          value=examples[0]['im_path'],
      )
      inp_query = gr.Textbox(
          label='Description',
          lines=1,
          value=examples[0]['desc'],
      )

    with gr.Column():
      inp_openai_api_key = gr.Textbox(
          label='OpenAI API Key (not saved)', lines=1
      )
      with gr.Group():
        inp_n_samples_init = gr.Slider(
            label='N Samples for Initialization',
            minimum=10,
            maximum=40,
            value=25,
            step=1,
        )
        inp_n_samples_opt = gr.Slider(
            label='N Samples for Optimization',
            minimum=3,
            maximum=20,
            value=10,
            step=1,
        )
        inp_n_iters = gr.Slider(
            label='N Iterations', minimum=1, maximum=5, value=3, step=1
        )
        inp_n_parallel_trials = gr.Slider(
            label='N Parallel Trials', minimum=1, maximum=3, value=1, step=1
        )
      btn_run = gr.Button('Run')

  with gr.Group():
    out_ims = gr.Gallery(
        label='Images with Sampled and Chosen Points',
        columns=4,
        rows=1,
        interactive=False,
        object_fit="contain", height="auto"
    )
    out_info = gr.Textbox(label='Info', lines=1)

  btn_run.click(
      run_vip,
      inputs=[
          inp_im,
          inp_query,
          inp_n_samples_init,
          inp_n_samples_opt,
          inp_n_iters,
          inp_n_parallel_trials,
          inp_openai_api_key,
      ],
      outputs=[out_ims, out_info],
  )

demo.launch()