import streamlit as st from PIL import Image import requests from io import BytesIO # import tensorflow as tf import streamlit as st from diffusers import StableDiffusionPipeline import torch from accelerate import Accelerator #model_id = "CompVis/stable-diffusion-v1-4" #pipe = StableDiffusionPipeline.from_pretrained(model_id) # Ensure the model is using the CPU #pipe = pipe.to("cpu") image_html = "" accelerator = Accelerator() # Function to display an example image def display_example_image(url): response = requests.get(url) img = Image.open(BytesIO(response.content)) st.image(img, caption='Generated Image', use_column_width=True) #function to generate AI based images using Huggingface Diffusers def generate_images_using_huggingface_diffusers(text): # pipe = StableDiffusionPipeline.from_pretrained("sd-dreambooth-library/cat-toy", torch_dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float32) # pipe = pipe.to("cuda") pipe = pipe.to(accelerator.device) prompt = text image = pipe(prompt,num_images_per_prompt=3) return image # Placeholder function for generating images (replace this with your actual generative AI code) def generate_images(prompt, num_images=3): # This is a placeholder function. Replace it with your actual image generation code. # Here, we are just returning the same example image multiple times for demonstration. image_url = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=7.5).images # Replace with a valid image URL response = requests.get(image_url) img = Image.open(BytesIO(response.content)) image_html = image_url return [img] * num_images title_center = """ """ # Title of the app st.markdown(title_center, unsafe_allow_html=True) title_container = """